相關(guān)習(xí)題
 0  263459  263467  263473  263477  263483  263485  263489  263495  263497  263503  263509  263513  263515  263519  263525  263527  263533  263537  263539  263543  263545  263549  263551  263553  263554  263555  263557  263558  263559  263561  263563  263567  263569  263573  263575  263579  263585  263587  263593  263597  263599  263603  263609  263615  263617  263623  263627  263629  263635  263639  263645  263653  266669 

科目: 來源: 題型:

【題目】已知pr的充分條件而不是必要條件,qr的充分條件,sr的必要條件,qs的必要條件,F(xiàn)有下列命題:①sq的充要條件;②pq的充分條件而不是必要條件;③rq的必要條件而不是充分條件;④的必要條件而不是充分條件;⑤rs的充分條件而不是必要條件.則正確命題序號是_______.

查看答案和解析>>

科目: 來源: 題型:

【題目】某廠銷售部以箱為單位銷售某種零件,每箱的定價為元,低于箱按原價銷售,不低于箱則有以下兩種優(yōu)惠方案:①以箱為基準(zhǔn),每多箱送箱;②通過雙方議價,買方能以優(yōu)惠成交的概率為,以優(yōu)惠成交的概率為.

甲、乙兩單位都要在該廠購買箱這種零件,兩單位都選擇方案②,且各自達(dá)成的成交價格相互獨(dú)立,求甲單位優(yōu)惠比例不低于乙單位優(yōu)惠比例的概率;

某單位需要這種零件箱,以購買總價的數(shù)學(xué)期望為決策依據(jù),試問該單位選擇哪種優(yōu)惠方案更劃算?

查看答案和解析>>

科目: 來源: 題型:

【題目】從一批蘋果中,隨機(jī)抽取50個,其重量(單位:克)的頻數(shù)分布表如下:

分組(重量)

頻數(shù)(個)

5

10

20

15

(1) 根據(jù)頻數(shù)分布表計算蘋果的重量在的頻率;

(2) 用分層抽樣的方法從重量在的蘋果中共抽取4個,其中重量在的有幾個?

(3) 在(2)中抽出的4個蘋果中,任取2個,求重量在中各有1個的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)某校新、老校區(qū)之間開車單程所需時間為,只與道路暢通狀況有關(guān),對其容量為的樣本進(jìn)行統(tǒng)計,結(jié)果如圖:

(分鐘)

25

30

35

40

頻數(shù)(次)

20

30

40

10

1)求的分布列與數(shù)學(xué)期望

2)劉教授駕車從老校區(qū)出發(fā),前往新校區(qū)做一個50分鐘的講座,結(jié)束后立即返回老校區(qū),求劉教授從離開老校區(qū)到返回老校區(qū)共用時間不超過120分鐘的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】正方體的棱上(除去棱AD)到直線的距離相等的點(diǎn)有個,記這個點(diǎn)分別為,則直線與平面所成角的正弦值為( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知命題,;

(1)若為假命題,求實(shí)數(shù)的取值范圍;

(2))若為真命題,為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知非零向量列滿足:,,(,.

1)證明:數(shù)列是等比數(shù)列;

2)向量的夾角;

3)設(shè),將中所有與共線的向量按原來的順序排成一列,記作,令為坐標(biāo)原點(diǎn),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)滿足恒成立.

(1)判斷函數(shù)上的單調(diào)性,并說明理由;

(2)若上恒成立,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點(diǎn)是拋物線上一點(diǎn),的焦點(diǎn).

(1)若,上的兩點(diǎn),證明:,,依次成等比數(shù)列.

(2)過作兩條互相垂直的直線與的另一個交點(diǎn)分別交于,(的上方),求向量軸正方向上的投影的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在多面體ABCDEF中,四邊形ADEF為正方形,AD∥BC,AD⊥AB,AD=2BC=2.

(1)證明:平面ADEF⊥平面ABF.

(2)若平面ADEF⊥平面ABCD,二面角A-BC-E為30°,三棱錐A-BDF的外接球的球心為O,求異面直線OC與DF所成角的余弦值

查看答案和解析>>

同步練習(xí)冊答案