科目: 來源: 題型:
【題目】已知為坐標(biāo)原點,橢圓:的左、右焦點分別為,.過焦點且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在直線:與橢圓相交于兩點,使得?若存在,求的取值范圍;若不存在,請說明理由!
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為,直線l的方程為:
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線l與橢圓相交于、兩點
①若線段中點的橫坐標(biāo)為,求斜率的值;
②已知點,求證:為定值
查看答案和解析>>
科目: 來源: 題型:
【題目】拋物線頂點在原點,焦點在x軸上,且過點(4,4),焦點為F.
(1)求拋物線的焦點坐標(biāo)和標(biāo)準(zhǔn)方程;
(2)P是拋物線上一動點,M是PF的中點,求M的軌跡方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時間的關(guān)系,對該校200名高三學(xué)生平均每天體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)
平均每天鍛煉的時間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均體育鍛煉時間在的學(xué)生評價為“鍛煉達標(biāo)”.
(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;
鍛煉不達標(biāo) | 鍛煉達標(biāo) | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
并通過計算判斷,是否能在犯錯誤的概率不超過0.025的前提下認為“鍛煉達標(biāo)”與性別有關(guān)?
(2)在“鍛煉達標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出5人,進行體育鍛煉體會交流,再從這5人中選出2人作重點發(fā)言,求作重點發(fā)言的2人中,至少1人是女生的概率.
參考公式:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,圓:經(jīng)過伸縮變換,后得到曲線以坐標(biāo)原點為極點,x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長度,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
求曲線的直角坐標(biāo)方程及直線l的直角坐標(biāo)方程;
在上求一點M,使點M到直線l的距離最小,并求出最小距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等軸雙曲線:的右焦點為,為坐標(biāo)原點,過作一條漸近線的垂線且垂足為,.
(1)求等軸雙曲線的方程;
(2)若過點且方向向量為的直線交雙曲線于、兩點,求的值;
(3)假設(shè)過點的動直線與雙曲線交于、兩點,試問:在軸上是否存在定點,使得為常數(shù),若存在,求出的坐標(biāo),若不存在,試說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知(,是虛數(shù)單位),,定義:,,給出下列命題:
①對任意,都有;
②若是復(fù)數(shù)的共軛復(fù)數(shù),則恒成立;
③,則;
④對任意,結(jié)論恒成立;
則其中真命題是( )
A.①②③④B.②③④C.②④D.①③
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,,,…,是曲線:上的點,,,…,是軸正半軸上的點,且,,…,均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點).
(1)寫出、和之間的等量關(guān)系,以及、和之間的等量關(guān)系;
(2)猜測并證明數(shù)列的通項公式;
(3)設(shè),集合,,若,求實常數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com