科目: 來源: 題型:
【題目】設(shè)函數(shù)(x∈R,實數(shù)a∈[0,+∞),e=2.71828…是自然對數(shù)的底數(shù),).
(Ⅰ)若f(x)≥0在x∈R上恒成立,求實數(shù)a的取值范圍;
(Ⅱ)若ex≥lnx+m對任意x>0恒成立,求證:實數(shù)m的最大值大于2.3.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修:坐標系與參數(shù)方程選講.
在平面直角坐標系中,曲線(為參數(shù),實數(shù)),曲線
(為參數(shù),實數(shù)). 在以為極點, 軸的正半軸為極軸的極坐標系中,射線與交于兩點,與交于兩點. 當時, ;當時, .
(1)求的值; (2)求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),)以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)設(shè)曲線和交于,兩點,點,若,,成等比數(shù)列,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,橢圓的離心率為,直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)過原點的直線與橢圓交于兩點(不是橢圓的頂點),點在橢圓上,且,直線與軸軸分別交于兩點.
①設(shè)直線斜率分別為,證明存在常數(shù)使得,并求出的值;
②求面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點為,點在橢圓上,且點關(guān)于原點對稱,直線的斜率的乘積為.
(1)求橢圓的方程;
(2)已知直線經(jīng)過點,且與橢圓交于不同的兩點,若,判斷直線的斜率是否為定值?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某種水果按照果徑大小可分為四類:標準果、優(yōu)質(zhì)果、精品果、禮品果.某采購商從采購的一批水果中隨機抽取個,利用水果的等級分類標準得到的數(shù)據(jù)如下:
等級 | 標準果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
個數(shù) | 10 | 30 | 40 | 20 |
(1)若將頻率是為概率,從這個水果中有放回地隨機抽取個,求恰好有個水果是禮品果的概率.(結(jié)果用分數(shù)表示)
(2)用樣本估計總體,果園老板提出兩種購銷方案給采購商參考.
方案:不分類賣出,單價為元.
方案:分類賣出,分類后的水果售價如下:
等級 | 標準果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
售價(元/kg) | 16 | 18 | 22 | 24 |
從采購單的角度考慮,應(yīng)該采用哪種方案?
(3)用分層抽樣的方法從這個水果中抽取個,再從抽取的個水果中隨機抽取個,表示抽取的是精品果的數(shù)量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為(為參數(shù),).以為極點,軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)已知曲線與曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com