相關(guān)習題
 0  264068  264076  264082  264086  264092  264094  264098  264104  264106  264112  264118  264122  264124  264128  264134  264136  264142  264146  264148  264152  264154  264158  264160  264162  264163  264164  264166  264167  264168  264170  264172  264176  264178  264182  264184  264188  264194  264196  264202  264206  264208  264212  264218  264224  264226  264232  264236  264238  264244  264248  264254  264262  266669 

科目: 來源: 題型:

【題目】已知橢圓 )的左右焦點分別為 ,離心率為,點在橢圓上, ,過與坐標軸不垂直的直線與橢圓交于, 兩點.

(Ⅰ)求橢圓的方程;

(Ⅱ)若, 的中點為,在線段上是否存在點,使得?若存在,求實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】某學校為了教職工的住房問題,計劃征用一塊土地蓋一幢總建筑面積為的宿舍樓(每層的建筑面積相同).已知土地的征用費為,土地的征用面積為第一層的倍,經(jīng)工程技術(shù)人員核算,第一層的建筑費用相同都為400,以后每增高一層,其建筑費用就增加50.試設(shè)計這幢宿舍樓的樓高層數(shù),使總費用最少,并求出其最少費用.(總費用為建筑費用和征地費用之和).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,在直角梯形中,分別是的中點,將三角形沿折起,下列說法正確的是__________(填上所有正確的序號).

①不論折至何位置(不在平面內(nèi))都有平面;

②不論折至何位置都有;

③不論折至何位置(不在平面內(nèi))都有.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的兩個焦點,離心率為的周長等于,點在橢圓上,且邊上.

1)求橢圓的標準方程;

2)如圖,過圓上任意一點作橢圓的兩條切線與圓交與點、,求面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在長方體中,、分別是棱,

上的點,,

1) 求異面直線所成角的余弦值;

2) 證明平面

3) 求二面角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某工廠擬建一座平面圖(如右圖所示)為矩形且面積為200平方米的三級污水處理池,由于地形限制,長、寬都不能超過16米,如果池外周壁建造單價為每米400元,中間兩條隔墻建造單價為每米248元,池底建造單價為每平方米80(池壁厚度忽略不計,且池無蓋)

(1)寫出總造價y()與污水處理池長x()的函數(shù)關(guān)系式,并指出其定義域;

(2)求污水處理池的長和寬各為多少時,污水處理池的總造價最低?并求最低總造價.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),且當時, ,則對任意,函數(shù)的零點個數(shù)至多有( )

A. 3個 B. 4個 C. 6個 D. 9個

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)上有三個零點,求實數(shù)的取值范圍;

(2)設(shè)函數(shù)為自然對數(shù)的底數(shù)),證明:對任意的,都有恒成立.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知為等腰直角三角形,,將沿底邊上的高線折起到位置,使,如圖所示,分別取的中點.

(1)求二面角的余弦值;

(2)判斷在線段上是否存在一點,使平面?若存在,求出點的位置,若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知某蔬菜商店買進的土豆(噸)與出售天數(shù)(天)之間的關(guān)系如下表所示:

2

3

4

5

6

7

9

12

1

2

3

3

4

5

6

8

(1)請根據(jù)上表數(shù)據(jù)在下列網(wǎng)格紙中繪制散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程(其中保留三位小數(shù));(注:

(3)在表格中(的8個對應(yīng)點中,任取3個點,記這3個點在直線的下方的個數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案