科目: 來源: 題型:
【題目】已知橢圓: ( )的左右焦點分別為, ,離心率為,點在橢圓上, , ,過與坐標軸不垂直的直線與橢圓交于, 兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若, 的中點為,在線段上是否存在點,使得?若存在,求實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學校為了教職工的住房問題,計劃征用一塊土地蓋一幢總建筑面積為的宿舍樓(每層的建筑面積相同).已知土地的征用費為元,土地的征用面積為第一層的倍,經(jīng)工程技術(shù)人員核算,第一層的建筑費用相同都為400元,以后每增高一層,其建筑費用就增加50元.試設(shè)計這幢宿舍樓的樓高層數(shù),使總費用最少,并求出其最少費用.(總費用為建筑費用和征地費用之和).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在直角梯形中,分別是的中點,將三角形沿折起,下列說法正確的是__________(填上所有正確的序號).
①不論折至何位置(不在平面內(nèi))都有平面;
②不論折至何位置都有;
③不論折至何位置(不在平面內(nèi))都有.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的兩個焦點,,離心率為,的周長等于,點、在橢圓上,且在邊上.
(1)求橢圓的標準方程;
(2)如圖,過圓上任意一點作橢圓的兩條切線和與圓交與點、,求面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠擬建一座平面圖(如右圖所示)為矩形且面積為200平方米的三級污水處理池,由于地形限制,長、寬都不能超過16米,如果池外周壁建造單價為每米400元,中間兩條隔墻建造單價為每米248元,池底建造單價為每平方米80元(池壁厚度忽略不計,且池無蓋).
(1)寫出總造價y(元)與污水處理池長x(米)的函數(shù)關(guān)系式,并指出其定義域;
(2)求污水處理池的長和寬各為多少時,污水處理池的總造價最低?并求最低總造價.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),且當時, ,則對任意,函數(shù)的零點個數(shù)至多有( )
A. 3個 B. 4個 C. 6個 D. 9個
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上有三個零點,求實數(shù)的取值范圍;
(2)設(shè)函數(shù)(為自然對數(shù)的底數(shù)),證明:對任意的,都有恒成立.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知為等腰直角三角形,,將沿底邊上的高線折起到位置,使,如圖所示,分別取的中點.
(1)求二面角的余弦值;
(2)判斷在線段上是否存在一點,使平面?若存在,求出點的位置,若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知某蔬菜商店買進的土豆(噸)與出售天數(shù)(天)之間的關(guān)系如下表所示:
2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(1)請根據(jù)上表數(shù)據(jù)在下列網(wǎng)格紙中繪制散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程(其中保留三位小數(shù));(注:)
(3)在表格中(的8個對應(yīng)點中,任取3個點,記這3個點在直線的下方的個數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com