相關(guān)習(xí)題
 0  264260  264268  264274  264278  264284  264286  264290  264296  264298  264304  264310  264314  264316  264320  264326  264328  264334  264338  264340  264344  264346  264350  264352  264354  264355  264356  264358  264359  264360  264362  264364  264368  264370  264374  264376  264380  264386  264388  264394  264398  264400  264404  264410  264416  264418  264424  264428  264430  264436  264440  264446  264454  266669 

科目: 來源: 題型:

【題目】在四棱錐中,,.

1)若點的中點,求證:平面;

2)當(dāng)平面平面時,求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】斐波那契數(shù)列,又稱黃金分割數(shù)列.因數(shù)學(xué)家列昂納多·斐波那契以兔子繁殖為例子而引入,故又稱為兔子數(shù)列,指的是這樣一個數(shù)列:1、1、2、3、58、1321、34…..,在數(shù)學(xué)上,斐波那契數(shù)列以如下被遞推的方法定義:,,.這種遞推方法適合研究生活中很多問題.比如:一六八中學(xué)食堂一樓到二樓有15個臺階,某同學(xué)一步可以跨一個或者兩個臺階,則他到二樓就餐有( )種上樓方法.

A.377B.610C.987D.1597

查看答案和解析>>

科目: 來源: 題型:

【題目】已知為兩個不同的平面,,為兩條不同的直線,有以下命題:

①若,則.②若,,則.③若,,則.④若,,,則.

其中真命題有()

A.①②B.①③C.②③D.③④

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè),命題p:函數(shù)內(nèi)單調(diào)遞增;q:函數(shù)僅在處有極值.

1)若命題q是真命題,求a的取值范圍;

2)若命題是真命題,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知,則的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示.

1)求的值;

2)求上的最大值和最小值;

3)不畫圖,說明函數(shù)的圖象可由的圖象經(jīng)過怎樣變化得到.

查看答案和解析>>

科目: 來源: 題型:

【題目】中,若,則的形狀是(

A.等腰三角形B.直角三角形

C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

科目: 來源: 題型:

【題目】若存在實數(shù)使得則稱是區(qū)間一內(nèi)點.

(1)求證:的充要條件是存在使得是區(qū)間一內(nèi)點;

(2)若實數(shù)滿足:求證:存在,使得是區(qū)間一內(nèi)點;

(3)給定實數(shù),若對于任意區(qū)間,是區(qū)間的一內(nèi)點,是區(qū)間的一內(nèi)點,且不等式和不等式對于任意都恒成立,求證:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列的前項和為,且滿足:

(1)證明:是等比數(shù)列,并求數(shù)列的通項公式.

(2)設(shè),若數(shù)列是等差數(shù)列,求實數(shù)的值;

(3)在(2)的條件下,設(shè) 記數(shù)列的前項和為,若對任意的存在實數(shù),使得,求實數(shù)的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某旅游勝地欲開發(fā)一座景觀山,從山的側(cè)面進(jìn)行勘測,迎面山坡線由同一平面的兩段拋物線組成,其中所在的拋物線以為頂點、開口向下,所在的拋物線以為頂點、開口向上,以過山腳(點)的水平線為軸,過山頂(點)的鉛垂線為軸建立平面直角坐標(biāo)系如圖(單位:百米).已知所在拋物線的解析式所在拋物線的解析式為

(1)求值,并寫出山坡線的函數(shù)解析式;

(2)在山坡上的700米高度(點)處恰好有一小塊平地,可以用來建造索道站,索道的起點選擇在山腳水平線上的點處,(米),假設(shè)索道可近似地看成一段以為頂點、開口向上的拋物線當(dāng)索道在上方時,索道的懸空高度有最大值,試求索道的最大懸空高度;

(3)為了便于旅游觀景,擬從山頂開始、沿迎面山坡往山下鋪設(shè)觀景臺階,臺階每級的高度為20厘米,長度因坡度的大小而定,但不得少于20厘米,每級臺階的兩端點在坡面上(見圖).試求出前三級臺階的長度(精確到厘米),并判斷這種臺階能否一直鋪到山腳,簡述理由?

查看答案和解析>>

同步練習(xí)冊答案