科目: 來源: 題型:
【題目】(1)直線在矩陣所對應的變換下得到直線,求的方程.
(2)已知點是曲線(為參數(shù),)上一點,為坐標原點直線的傾斜角為,求點的坐標.
(3)求不等式的解集.
查看答案和解析>>
科目: 來源: 題型:
【題目】在無窮數(shù)列中,,記前項中的最大項為,最小項為,令.
(1)若的前項和滿足.
①求;
②是否存在正整數(shù)滿足?若存在,請求出這樣的,若不存在,請說明理由.
(2)若數(shù)列是等比數(shù)列,求證:數(shù)列是等比數(shù)列.
查看答案和解析>>
科目: 來源: 題型:
【題目】設函數(shù)(為自然對數(shù)的底數(shù),).
(1)當時,求函數(shù)的圖象在處的切線方程;
(2)若函數(shù)在區(qū)間上具有單調(diào)性,求的取值范圍;
(3)若函數(shù)有且僅有個不同的零點,且,,求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,橢圓經(jīng)過點,且點與橢圓的左、右頂點連線的斜率之積為.
(1)求橢圓的方程;
(2)若橢圓上存在兩點,使得的垂心(三角形三條高的交點)恰為坐標原點,試求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某人承包了一塊矩形土地用來種植草莓,其中m,m.現(xiàn)規(guī)劃建造如圖所示的半圓柱型塑料薄膜大棚個,每個半圓柱型大棚的兩半圓形底面與側(cè)面都需蒙上塑料薄膜(接頭處忽略不計),塑料薄膜的價格為每平方米元;另外,還需在每個大棚之間留下m寬的空地用于建造排水溝與行走小路(如圖中m),這部分建設造價為每平方米元.
(1)當時,求蒙一個大棚所需塑料薄膜的面積;(本小題結果保留)
(2)試確定大棚的個數(shù),使得上述兩項費用的和最低?(本小題計算中取)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),曲線在點處的切線方程為.
(1)求函數(shù)的解析式,并證明:.
(2)已知,且函數(shù)與函數(shù)的圖象交于,兩點,且線段的中點為,證明:.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:的離心率為,焦距為.
(1)求的方程;
(2)若斜率為的直線與橢圓交于,兩點(點,均在第一象限),為坐標原點.
①證明:直線的斜率依次成等比數(shù)列.
②若與關于軸對稱,證明:.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠預購軟件服務,有如下兩種方案:
方案一:軟件服務公司每日收取工廠60元,對于提供的軟件服務每次10元;
方案二:軟件服務公司每日收取工廠200元,若每日軟件服務不超過15次,不另外收費,若超過15次,超過部分的軟件服務每次收費標準為20元.
(1)設日收費為元,每天軟件服務的次數(shù)為,試寫出兩種方案中與的函數(shù)關系式;
(2)該工廠對過去100天的軟件服務的次數(shù)進行了統(tǒng)計,得到如圖所示的條形圖,依據(jù)該統(tǒng)計數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個方案中選擇一個,哪個方案更合適?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】“割圓術”是劉徽最突出的數(shù)學成就之一,他在《九章算術注》中提出割圓術,并作為計算圓的周長,面積已經(jīng)圓周率的基礎,劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結果是當時世界上圓周率計算的最精確數(shù)據(jù).如圖,當分割到圓內(nèi)接正六邊形時,某同學利用計算機隨機模擬法向圓內(nèi)隨機投擲點,計算得出該點落在正六邊形內(nèi)的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com