相關習題
 0  264754  264762  264768  264772  264778  264780  264784  264790  264792  264798  264804  264808  264810  264814  264820  264822  264828  264832  264834  264838  264840  264844  264846  264848  264849  264850  264852  264853  264854  264856  264858  264862  264864  264868  264870  264874  264880  264882  264888  264892  264894  264898  264904  264910  264912  264918  264922  264924  264930  264934  264940  264948  266669 

科目: 來源: 題型:

【題目】近年,國家逐步推行全新的高考制度.新高考不再分文理科,某省采用3+3模式,其中語文、數學、外語三科為必考科目,滿分各150分,另外考生還要依據想考取的高校及專業(yè)的要求,結合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物6門科目中自選3門參加考試(63),每科目滿分100.為了應對新高考,某高中從高一年級1000名學生(其中男生550人,女生450人)中,采用分層抽樣的方法從中抽取名學生進行調查.

1)已知抽取的名學生中含男生55人,求的值;

2)學校計劃在高一上學期開設選修中的“物理”和“地理”兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生進行問卷調查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目),下表是根據調查結果得到的列聯(lián)表. 請將列聯(lián)表補充完整,并判斷是否有 99%的把握認為選擇科目與性別有關?說明你的理由;

3)在抽取到的女生中按(2)中的選課情況進行分層抽樣,從中抽出9名女生,再從這9名女生中抽取4人,設這4人中選擇“地理”的人數為,求的分布列及期望.

附:,

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,平面四邊形中,上一點,均為等邊三角形, 分別是的中點,將四邊形沿向上翻折至四邊形的位置,使二面角為直二面角,如圖2所示.

1)求證:平面;

2)求平面與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數.

1)求在點處的切線方程;

2)當時,證明:;

3)判斷曲線是否存在公切線,若存在,說明有幾條,若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】某校高一、高二年級的全體學生都參加了體質健康測試,測試成績滿分為100分,規(guī)定測試成績在之間為“體質優(yōu)秀”,在之間為“體質良好”,在之間為“體質合格”,在之間為“體質不合格”.現從這兩個年級中各隨機抽取7名學生,測試成績如下:

其中m,n是正整數.

(Ⅰ)若該校高一年級有280學生,試估計高一年級“體質優(yōu)秀”的學生人數;

(Ⅱ)若從高一年級抽取的7名學生中隨機抽取2人,記X為抽取的2人中為“體質良好”的學生人數,求X的分布列及數學期望;

(Ⅲ)設兩個年級被抽取學生的測試成績的平均數相等,當高二年級被抽取學生的測試成績的方差最小時,寫出mn的值.(只需寫出結論)

查看答案和解析>>

科目: 來源: 題型:

【題目】某建材商場國慶期間搞促銷活動,規(guī)定:如果顧客選購物品的總金額不超過600元,則不享受任何折扣優(yōu)惠;如果顧客選購物品的總金額超過600元,則超過600元部分享受一定的折扣優(yōu)惠,折扣優(yōu)惠按下表累計計算.

某人在此商場購物獲得的折扣優(yōu)惠金額為30元,則他實際所付金額為____元.

查看答案和解析>>

科目: 來源: 題型:

【題目】割圓術是我國古代計算圓周率的一種方法.在公元年左右,由魏晉時期的數學家劉徽發(fā)明.其原理就是利用圓內接正多邊形的面積逐步逼近圓的面積,進而求.當時劉微就是利用這種方法,把的近似值計算到之間,這是當時世界上對圓周率的計算最精確的數據.這種方法的可貴之處就是利用已知的、可求的來逼近未知的、要求的,用有限的來逼近無窮的.為此,劉微把它概括為割之彌細,所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣”.這種方法極其重要,對后世產生了巨大影響,在歐洲,這種方法后來就演變?yōu)楝F在的微積分.根據割圓術,若用正二十四邊形來估算圓周率,則的近似值是( )(精確到)(參考數據

A.B.

C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知

(1)求函數的極值;

(2),對于任意,總有成立,求實數的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數,其中.

1)若曲線在點處的切線與直線平行,求的方程;

2)若,函數上為增函數,求證:.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了調查某款電視機的壽命,研究人員對該款電視機進行了相應的測試,將得到的數據分組:,,,并統(tǒng)計如圖所示:

并對不同性別的市民對這款電視機的購買意愿作出調查,得到的數據如下表所示:

愿意購買該款電視機

不愿意購買該款電視機

總計

男性

800

1000

女性

600

總計

1200

(1)根據圖中的數據,試估計該款電視機的平均壽命;

(2)根據表中數據,能否在犯錯誤的概率不超過0.001的前提下認為“是否愿意購買該款電視機”與“市民的性別”有關;

(3)以頻率估計概率,若在該款電視機的生產線上隨機抽取4臺,記其中壽命不低于4年的電視機的臺數為X,求X的分布列及數學期望.

參考公式及數據:,其中

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目: 來源: 題型:

【題目】為正整數,區(qū)間(其中,)同時滿足下列兩個條件:

①對任意,存在使得;

②對任意,存在,使得(其中).

(Ⅰ)判斷能否等于;(結論不需要證明).

(Ⅱ)求的最小值;

(Ⅲ)研究是否存在最大值,若存在,求出的最大值;若不在在,說明理由.

查看答案和解析>>

同步練習冊答案