相關習題
 0  265262  265270  265276  265280  265286  265288  265292  265298  265300  265306  265312  265316  265318  265322  265328  265330  265336  265340  265342  265346  265348  265352  265354  265356  265357  265358  265360  265361  265362  265364  265366  265370  265372  265376  265378  265382  265388  265390  265396  265400  265402  265406  265412  265418  265420  265426  265430  265432  265438  265442  265448  265456  266669 

科目: 來源: 題型:

【題目】已知橢圓的離心率,橢圓上的點到其左焦點的最大距離為

1)求橢圓的標準方程;

2)過橢圓左焦點的直線與橢圓交于兩點,直線,過點作直線的垂線與直線交于點,求的最小值和此時直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽,要求在交付用戶前每件產(chǎn)品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產(chǎn)品,且每件產(chǎn)品檢驗合格與否相互獨立.若每件產(chǎn)品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產(chǎn)品每個()一組進行分組檢驗,如果某一組產(chǎn)品檢驗合格,則說明該組內(nèi)產(chǎn)品均合格,若檢驗不合格,則說明該組內(nèi)有不合格產(chǎn)品,再對該組內(nèi)每一件產(chǎn)品單獨進行檢驗,如此,每一組產(chǎn)品只需檢驗一次或次.設該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗次數(shù)為

1的分布列及其期望;

2)(i)試說明,當越大時,該方案越合理,即所需平均檢驗次數(shù)越少;

ii)當時,求使該方案最合理時的值及件該產(chǎn)品的平均檢驗次數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】波羅尼斯(古希臘數(shù)學家,約公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網(wǎng)羅殆盡幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現(xiàn)有,,則當的面積最大時,AC邊上的高為_______________.

查看答案和解析>>

科目: 來源: 題型:

【題目】《周易》是我國古代典籍,用描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中表示一個陽爻,表示一個陰爻).若從八卦中任取兩卦,這兩卦的六個爻中恰有一個陽爻的概率為(

A.B.

C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列的前項和為,把滿足條件(對任意的)的所有數(shù)列構成的集合記為.

1)若數(shù)列的通項為,判斷是否屬于,并說明理由;

2)若數(shù)列的通項為,判斷是否屬于,并說明理由;

3)若數(shù)列是等差數(shù)列,且,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓)的右焦點為,左右頂點分別為,,過點的直線(不與軸重合)交橢圓點,直線軸的交點為,與直線的交點為.

1)求橢圓的方程;

2)若,求出點的坐標;

3)求證:、、三點共線.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在郊野公園的景觀河的兩岸,、是夾角為120°的兩條岸邊步道(長度均超過千米),為方便市民觀光游覽,現(xiàn)準備在河道拐角處的另一側建造一個觀景臺,在兩條步道、上分別設立游客上下點、,從到觀景臺建造兩條游船觀光線路、,測得千米.

1)求游客上下點間的距離;

2)若,設,求兩條觀光線路之和關于的表達式,并求其最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】2021年某省將實行的新高考模式,即語文、數(shù)學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為________

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓C方程為,橢圓中心在原點,焦點在x軸上.

1)證明圓C恒過一定點M,并求此定點M的坐標;

2)判斷直線與圓C的位置關系,并證明你的結論;

3)當時,圓C與橢圓的左準線相切,且橢圓過(1)中的點M,求此時橢圓方程;在x軸上是否存在兩定點A,B使得對橢圓上任意一點Q(異于長軸端點),直線的斜率之積為定值?若存在,求出AB坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】設數(shù)列的各項均為不等的正整數(shù),其前項和為,我們稱滿足條件“對任意的,均有”的數(shù)列為“好”數(shù)列.

(1)試分別判斷數(shù)列,是否為“好”數(shù)列,其中,,并給出證明;

(2)已知數(shù)列為“好”數(shù)列.

① 若,求數(shù)列的通項公式;

② 若,且對任意給定正整數(shù)),有成等比數(shù)列,求證:

查看答案和解析>>

同步練習冊答案