相關(guān)習(xí)題
 0  265563  265571  265577  265581  265587  265589  265593  265599  265601  265607  265613  265617  265619  265623  265629  265631  265637  265641  265643  265647  265649  265653  265655  265657  265658  265659  265661  265662  265663  265665  265667  265671  265673  265677  265679  265683  265689  265691  265697  265701  265703  265707  265713  265719  265721  265727  265731  265733  265739  265743  265749  265757  266669 

科目: 來(lái)源: 題型:

【題目】如圖,在三棱錐P-ABC中,,平面平面ABC,點(diǎn)D在線(xiàn)段BC上,且,F是線(xiàn)段AB的中點(diǎn),點(diǎn)EPD上的動(dòng)點(diǎn).

1)證明:.

2)當(dāng)EF//平面PAC時(shí),求三棱錐C-DEF的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】互聯(lián)網(wǎng)+”智慧城市的重要內(nèi)容,A市在智慧城市的建設(shè)中,為方便市民使用互聯(lián)網(wǎng),在主城區(qū)覆蓋了免費(fèi)WiFi為了解免費(fèi)WiFiA市的使用情況,調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到如下列聯(lián)表(單位:人):

經(jīng)常使用免費(fèi)WiFi

爾或不用免費(fèi)WiFi

合計(jì)

45歲及以下

70

30

100

45歲以上

60

40

100

合計(jì)

130

70

200

1)根據(jù)以上數(shù)據(jù),判斷是否有90%的把握認(rèn)為A市使用免費(fèi)WiFi的情況與年齡有關(guān);

2)現(xiàn)從所抽取的45歲以上的市民中按是否經(jīng)常使用WiFi進(jìn)行分層抽樣再抽取5.

i)分別求這5人中經(jīng)常使用,偶爾或不用免費(fèi)WFi的人數(shù);

ii)從這5人中,再隨機(jī)選出2人各贈(zèng)送1件禮品,求選出的2人中至少有1人經(jīng)常使用免費(fèi)WiFi的概率.

附:,其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若有兩個(gè)不同的零點(diǎn),求的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】古希臘數(shù)學(xué)家阿波羅尼斯在其巨著《圓錐曲線(xiàn)論》中提出在同一平面上給出三點(diǎn),若其中一點(diǎn)到另外兩點(diǎn)的距離之比是一個(gè)大于零且不等于1的常數(shù),則該點(diǎn)軌跡是一個(gè)圓現(xiàn)在,某電信公司要在甲、乙、丙三地搭建三座5G信號(hào)塔來(lái)構(gòu)建一個(gè)三角形信號(hào)覆蓋區(qū)域,以實(shí)現(xiàn)5G商用,已知甲、乙兩地相距4公里,丙、甲兩地距離是丙、乙兩地距離的倍,則這個(gè)三角形信號(hào)覆蓋區(qū)域的最大面積(單位:平方公里)是(

A.B.C.D.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(Ⅱ)若函數(shù)有唯一零點(diǎn),求的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,直角梯形與等腰直角三角形所在的平面互相垂直.,,.

(1) 求證:;

(2) 求直線(xiàn)與平面所成角的正弦值;

(3) 線(xiàn)段上是否存在點(diǎn),使平面若存在,求出;若不存在,說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離比到定直線(xiàn)的距離小1.

(Ⅰ)求點(diǎn)的軌跡的方程;

(Ⅱ)過(guò)點(diǎn)任意作互相垂直的兩條直線(xiàn),分別交曲線(xiàn)于點(diǎn).設(shè)線(xiàn)段 的中點(diǎn)分別為,求證:直線(xiàn)恒過(guò)一個(gè)定點(diǎn);

(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的極坐標(biāo)方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為的正半軸建立平面直角坐標(biāo)系.

(1)求的參數(shù)方程;

(2)已知射線(xiàn),將逆時(shí)針旋轉(zhuǎn)得到,且交于兩點(diǎn), 交于兩點(diǎn),求取得最大值時(shí)點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】若定義在R上的函數(shù)滿(mǎn)足:對(duì)于任意實(shí)數(shù)xy,總有恒成立,我們稱(chēng)類(lèi)余弦型函數(shù).

已知類(lèi)余弦型函數(shù),且,求的值;

的條件下,定義數(shù)列23,的值.

類(lèi)余弦型函數(shù),且對(duì)于任意非零實(shí)數(shù)t,總有,證明:函數(shù)為偶函數(shù),設(shè)有理數(shù),滿(mǎn)足,判斷的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù),則下列命題中正確命題的個(gè)數(shù)是(

①函數(shù)上為周期函數(shù)

②函數(shù)在區(qū)間,上單調(diào)遞增

③函數(shù))取到最大值,且無(wú)最小值

④若方程)有且僅有兩個(gè)不同的實(shí)根,則

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案