相關習題
 0  265587  265595  265601  265605  265611  265613  265617  265623  265625  265631  265637  265641  265643  265647  265653  265655  265661  265665  265667  265671  265673  265677  265679  265681  265682  265683  265685  265686  265687  265689  265691  265695  265697  265701  265703  265707  265713  265715  265721  265725  265727  265731  265737  265743  265745  265751  265755  265757  265763  265767  265773  265781  266669 

科目: 來源: 題型:

【題目】下列結論中正確的個數是( ).

①在中,若,則是等腰三角形;

②在中,若 ,則

③兩個向量共線的充要條件是存在實數,使

④等差數列的前項和公式是常數項為0的二次函數.

A.0B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:

【題目】唐代詩人李頎的詩《古從軍行》開頭兩句說:“白日登山望烽火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數學問題一“將軍飲馬”問題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回軍營,怎樣走才能使總路程最短?在平面直角坐標系中,設軍營所在區(qū)域為,若將軍從點處出發(fā),河岸線所在直線方程為,并假定將軍只要到達軍營所在區(qū)域即回到軍營,則“將軍飲馬”的最短總路程為( ).

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】某公司為確定下一年度投入某種產品的宜傳費,需了解年宣傳費對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費和年銷售量數據進行了研究,發(fā)現(xiàn)年宣傳費x(萬元)和年銷售量y(單位:t)具有線性相關關系,并對數據作了初步處理,得到下面的一些統(tǒng)計量的值.

x(萬元)

2

4

5

3

6

y(單位:t

2.5

4

4.5

3

6

1)根據表中數據建立年銷售量y關于年宣傳費x的回歸方程.

2)已知這種產品的年利潤(萬元)與x,y的關系為根據(1)中的結果回答下列問題:

①當年宣傳費為10萬元時,預測該產品的年銷售量及年利潤;

②估計該產品的年利潤與年宣傳費的比值的最大值.

附:回歸方程中的斜率和截距的最小二乘估計公式分別為.

參考數據:.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的離心率,且圓經過橢圓C的上、下頂點.

1)求橢圓C的方程;

2)若直線l與橢圓C相切,且與橢圓相交于M,N兩點,證明:的面積為定值(O為坐標原點).

查看答案和解析>>

科目: 來源: 題型:

【題目】現(xiàn)有下列四個結論,其中所有正確結論的編號是___________.

①若,則的最大值為;

②若,是等差數列的前項,則;

③“”的一個必要不充分條件是“”;

④“”的否定為“,”.

查看答案和解析>>

科目: 來源: 題型:

【題目】某省新課改后某校為預測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數和其中本科上線人數,并將抽取數據制成下面的條形統(tǒng)計圖.

1)根據條形統(tǒng)計圖,估計本屆高三學生本科上線率.

2)已知該省甲市2020屆高考考生人數為4萬,假設以(1)中的本科上線率作為甲市每個考生本科上線的概率.

i)若從甲市隨機抽取10名高三學生,求恰有8名學生達到本科線的概率(結果精確到0.01);

ii)已知該省乙市2020屆高考考生人數為3.6萬,假設該市每個考生本科上線率均為,若2020屆高考本科上線人數乙市的均值不低于甲市,求p的取值范圍.

可能用到的參考數據:取,.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系中,曲線C的方程為.以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為

(1)求曲線C的參數方程和直線的直角坐標方程;

(2)若直線軸和y軸分別交于A,B兩點,P為曲線C上的動點,求PAB面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓中心在原點,焦點在坐標軸上,直線與橢圓在第一象限內的交點是,點軸上的射影恰好是橢圓的右焦點,橢圓另一個焦點是,且.

(1)求橢圓的方程;

(2)直線過點,且與橢圓交于兩點,求的內切圓面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某市教育部門為了了解全市高一學生的身高發(fā)育情況,從本市全體高一學生中隨機抽取了100人的身高數據進行統(tǒng)計分析。經數據處理后,得到了如下圖1所示的頻事分布直方圖,并發(fā)現(xiàn)這100名學生中,身不低于1.69米的學生只有16名,其身高莖葉圖如下圖2所示,用樣本的身高頻率估計該市高一學生的身高概率.

(I)求該市高一學生身高高于1.70米的概率,并求圖1中的值.

(II)若從該市高一學生中隨機選取3名學生,記為身高在的學生人數,求的分布列和數學期望;

(Ⅲ)若變量滿足,則稱變量滿足近似于正態(tài)分布的概率分布.如果該市高一學生的身高滿足近似于正態(tài)分布的概率分布,則認為該市高一學生的身高發(fā)育總體是正常的.試判斷該市高一學生的身高發(fā)育總體是否正常,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數 。

(1)當時,討論的單調性;

(2)若在點處的切線方程為,若對任意的

恒有,求的取值范圍(是自然對數的底數)。

查看答案和解析>>

同步練習冊答案