科目: 來源: 題型:
【題目】下列結論中正確的個數是( ).
①在中,若,則是等腰三角形;
②在中,若 ,則
③兩個向量,共線的充要條件是存在實數,使
④等差數列的前項和公式是常數項為0的二次函數.
A.0B.1C.2D.3
查看答案和解析>>
科目: 來源: 題型:
【題目】唐代詩人李頎的詩《古從軍行》開頭兩句說:“白日登山望烽火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數學問題一“將軍飲馬”問題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回軍營,怎樣走才能使總路程最短?在平面直角坐標系中,設軍營所在區(qū)域為,若將軍從點處出發(fā),河岸線所在直線方程為,并假定將軍只要到達軍營所在區(qū)域即回到軍營,則“將軍飲馬”的最短總路程為( ).
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宜傳費,需了解年宣傳費對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費和年銷售量數據進行了研究,發(fā)現(xiàn)年宣傳費x(萬元)和年銷售量y(單位:t)具有線性相關關系,并對數據作了初步處理,得到下面的一些統(tǒng)計量的值.
x(萬元) | 2 | 4 | 5 | 3 | 6 |
y(單位:t) | 2.5 | 4 | 4.5 | 3 | 6 |
(1)根據表中數據建立年銷售量y關于年宣傳費x的回歸方程.
(2)已知這種產品的年利潤(萬元)與x,y的關系為根據(1)中的結果回答下列問題:
①當年宣傳費為10萬元時,預測該產品的年銷售量及年利潤;
②估計該產品的年利潤與年宣傳費的比值的最大值.
附:回歸方程中的斜率和截距的最小二乘估計公式分別為.
參考數據:.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率,且圓經過橢圓C的上、下頂點.
(1)求橢圓C的方程;
(2)若直線l與橢圓C相切,且與橢圓相交于M,N兩點,證明:的面積為定值(O為坐標原點).
查看答案和解析>>
科目: 來源: 題型:
【題目】現(xiàn)有下列四個結論,其中所有正確結論的編號是___________.
①若,則的最大值為;
②若,,是等差數列的前項,則;
③“”的一個必要不充分條件是“”;
④“,”的否定為“,”.
查看答案和解析>>
科目: 來源: 題型:
【題目】某省新課改后某校為預測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數和其中本科上線人數,并將抽取數據制成下面的條形統(tǒng)計圖.
(1)根據條形統(tǒng)計圖,估計本屆高三學生本科上線率.
(2)已知該省甲市2020屆高考考生人數為4萬,假設以(1)中的本科上線率作為甲市每個考生本科上線的概率.
(i)若從甲市隨機抽取10名高三學生,求恰有8名學生達到本科線的概率(結果精確到0.01);
(ii)已知該省乙市2020屆高考考生人數為3.6萬,假設該市每個考生本科上線率均為,若2020屆高考本科上線人數乙市的均值不低于甲市,求p的取值范圍.
可能用到的參考數據:取,.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,曲線C的方程為.以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求曲線C的參數方程和直線的直角坐標方程;
(2)若直線與軸和y軸分別交于A,B兩點,P為曲線C上的動點,求△PAB面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓中心在原點,焦點在坐標軸上,直線與橢圓在第一象限內的交點是,點在軸上的射影恰好是橢圓的右焦點,橢圓另一個焦點是,且.
(1)求橢圓的方程;
(2)直線過點,且與橢圓交于兩點,求的內切圓面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市教育部門為了了解全市高一學生的身高發(fā)育情況,從本市全體高一學生中隨機抽取了100人的身高數據進行統(tǒng)計分析。經數據處理后,得到了如下圖1所示的頻事分布直方圖,并發(fā)現(xiàn)這100名學生中,身不低于1.69米的學生只有16名,其身高莖葉圖如下圖2所示,用樣本的身高頻率估計該市高一學生的身高概率.
(I)求該市高一學生身高高于1.70米的概率,并求圖1中的值.
(II)若從該市高一學生中隨機選取3名學生,記為身高在的學生人數,求的分布列和數學期望;
(Ⅲ)若變量滿足且,則稱變量滿足近似于正態(tài)分布的概率分布.如果該市高一學生的身高滿足近似于正態(tài)分布的概率分布,則認為該市高一學生的身高發(fā)育總體是正常的.試判斷該市高一學生的身高發(fā)育總體是否正常,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com