科目: 來(lái)源: 題型:
【題目】為了解某中學(xué)學(xué)生對(duì)《中華人民共和國(guó)交通安全法》的了解情況,調(diào)查部門(mén)在該校進(jìn)行了一次問(wèn)卷調(diào)查(共12道題),從該校學(xué)生中隨機(jī)抽取40人,統(tǒng)計(jì)了每人答對(duì)的題數(shù),將統(tǒng)計(jì)結(jié)果分成,,,,,六組,得到如下頻率分布直方圖.
(1)若答對(duì)一題得10分,未答對(duì)不得分,估計(jì)這40人的成績(jī)的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若從答對(duì)題數(shù)在內(nèi)的學(xué)生中隨機(jī)抽取2人,求恰有1人答對(duì)題數(shù)在內(nèi)的概率.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在圓上任取一點(diǎn),過(guò)點(diǎn)作軸的垂線段,為垂足,當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)在線段上,且,點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)過(guò)拋物線:的焦點(diǎn)作直線交拋物線于,兩點(diǎn),過(guò)且與直線垂直的直線交曲線于另一點(diǎn),求面積的最小值,以及取得最小值時(shí)直線的方程.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.
(Ⅰ)求,的值;
(Ⅱ)當(dāng)時(shí),若為整數(shù),且,求的最大值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】當(dāng)前,以“立德樹(shù)人”為目標(biāo)的課程改革正在有序推進(jìn).高中聯(lián)招對(duì)初三畢業(yè)學(xué)生進(jìn)行體育測(cè)試,是激發(fā)學(xué)生、家長(zhǎng)和學(xué)校積極開(kāi)展體育活動(dòng),保證學(xué)生健康成長(zhǎng)的有效措施.某地區(qū)2019年初中畢業(yè)生升學(xué)體育考試規(guī)定,考生必須參加立定跳遠(yuǎn)、擲實(shí)心球、1分鐘跳繩三項(xiàng)測(cè)試,三項(xiàng)考試滿分為50分,其中立定跳遠(yuǎn)15分,擲實(shí)心球15分,1分鐘跳繩20分.某學(xué)校在初三上期開(kāi)始時(shí)要掌握全年級(jí)學(xué)生每分鐘跳繩的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行測(cè)試,得到如下頻率分布直方圖,且規(guī)定計(jì)分規(guī)則如下表:
每分鐘跳 繩個(gè)數(shù) | |||||
得分 | 16 | 17 | 18 | 19 | 20 |
(Ⅰ)現(xiàn)從樣本的100名學(xué)生中,任意選取2人,求兩人得分之和不大于33分的概率;
(Ⅱ)若該校初三年級(jí)所有學(xué)生的跳繩個(gè)數(shù)服從正態(tài)分布,用樣本數(shù)據(jù)的平均值和方差估計(jì)總體的期望和方差(結(jié)果四舍五入到整數(shù)),已知樣本方差(各組數(shù)據(jù)用中點(diǎn)值代替).根據(jù)往年經(jīng)驗(yàn),該校初三年級(jí)學(xué)生經(jīng)過(guò)一年的訓(xùn)練,正式測(cè)試時(shí)每人每分鐘跳繩個(gè)數(shù)都有明顯進(jìn)步,假設(shè)明年正式測(cè)試時(shí)每人每分鐘跳繩個(gè)數(shù)比初三上學(xué)期開(kāi)始時(shí)個(gè)數(shù)增加10個(gè),利用現(xiàn)所得正態(tài)分布模型:
(ⅰ)預(yù)估全年級(jí)恰好有1000名學(xué)生,正式測(cè)試時(shí)每分鐘跳193個(gè)以上的人數(shù).(結(jié)果四舍五入到整數(shù))
(ⅱ)若在該地區(qū)2020年所有初三畢業(yè)生中任意選取3人,記正式測(cè)試時(shí)每分鐘跳202個(gè)以上的人數(shù)為,求隨機(jī)變量的分布列和期望.
附:若隨機(jī)變量服從正態(tài)分布,,則,
,
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知,及拋物線方程為,點(diǎn)在拋物線上,則使得為直角三角形的點(diǎn)個(gè)數(shù)為( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】公元263年左右,我國(guó)古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率,他從單位圓內(nèi)接正六邊形算起,令邊數(shù)一倍一倍地增加,即12,24,48,…,192,…,逐個(gè)算出正六邊形,正十二邊形,正二十四邊形,…,正一百九十二邊形,…的面積,這些數(shù)值逐步地逼近圓面積,劉徽算到了正一百九十二邊形,這時(shí)候的近似值是3.141024,劉徽稱這個(gè)方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點(diǎn)概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”.劉徽這種想法的可貴之處在于用已知的、可求的來(lái)逼近未知的、要求的,用有限來(lái)逼近無(wú)窮,這種思想極其重要,對(duì)后世產(chǎn)生了巨大影響.按照上面“割圓術(shù)”,用正二十四邊形來(lái)估算圓周率,則的近似值是( )(精確到).(參考數(shù)據(jù))
A.3.14B.3.11C.3.10D.3.05
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知等差數(shù)列{bn}的前n項(xiàng)和為Tn,且T4=4,b5=6.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)若正整數(shù)n1,n2,…,nt,…滿足5<n1<n2<…<nt,…且b3,b5,,,…,,…成等比數(shù)列,求數(shù)列{nt}的通項(xiàng)公式(t是正整數(shù));
(3)給出命題:在公比不等于1的等比數(shù)列{an}中,前n項(xiàng)和為Sn,若am,am+2,am+1成等差數(shù)列,則Sm,Sm+2,Sm+1也成等差數(shù)列.試判斷此命題的真假,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com