相關習題
 0  265837  265845  265851  265855  265861  265863  265867  265873  265875  265881  265887  265891  265893  265897  265903  265905  265911  265915  265917  265921  265923  265927  265929  265931  265932  265933  265935  265936  265937  265939  265941  265945  265947  265951  265953  265957  265963  265965  265971  265975  265977  265981  265987  265993  265995  266001  266005  266007  266013  266017  266023  266031  266669 

科目: 來源: 題型:

【題目】已知函數(shù).

1)若上單調遞增,求實數(shù)的取值范圍;

2)設,若,恒有成立,求的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知橢圓的左、右頂點為,,上、下頂點為,,記四邊形的內切圓為.

(1)求圓的標準方程;

(2)已知圓的一條不與坐標軸平行的切線交橢圓PM兩點.

(i)求證:;

(ii)試探究是否為定值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某職稱晉級評定機構對參加某次專業(yè)技術考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示).規(guī)定80分及以上者晉級成功,否則晉級失。M分100分).

1)求圖中的值;

2)根據已知條件完成下面列聯(lián)表,并判斷能否有的把握認為晉級成功與性別有關?

晉級成功

晉級失敗

合計

16

50

合計

(參考公式:,其中

0.40

0.025

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

3)將頻率視為概率,從本次考試80分以上的所有人員中,按分層抽樣的方式抽取5個人的樣本;現(xiàn)從5人樣本中隨機選取2人,求選取的2人恰好都來自區(qū)間的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】某中學2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該校考生的升學情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結論正確的是  

A. 與2015年相比,2018年一本達線人數(shù)減少

B. 與2015年相比,2018年二本達線人數(shù)增加了

C. 2015年與2018年藝體達線人數(shù)相同

D. 與2015年相比,2018年不上線的人數(shù)有所增加

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),

1)若,求函數(shù)的極值;

2)設函數(shù),求函數(shù)的單調區(qū)間;

3)若在上存在,使得成立,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,三棱柱中, 平面,,為鄰邊作平行四邊形,連接.

(1)求證:平面;

(2)若二面角.

求證:平面平面

求直線與平面所成角的正切值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某市為了解社區(qū)群眾體育活動的開展情況,擬采用分層抽樣的方法從A,B,C三個行政區(qū)抽出6個社區(qū)進行調查.已知A,B,C行政區(qū)中分別有12,18,6個社區(qū).

1)求從A,B,C三個行政區(qū)中分別抽取的社區(qū)個數(shù);

2)若從抽得的6個社區(qū)中隨機的抽取2個進行調查結果的對比,求抽取的2個社區(qū)中至少有一個來自A行政區(qū)的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】,已知函數(shù)與函數(shù)有交點,且交點橫坐標之和不大于,求的取值范圍_________。

查看答案和解析>>

科目: 來源: 題型:

【題目】某企業(yè)為了解某產品的銷售情況,選擇某個電商平臺對該產品銷售情況作調查.統(tǒng)計了一年內的月銷售數(shù)量(單位:萬件),得到該電商平臺月銷售數(shù)量的莖葉圖.

1)求該電商平臺在這一年內月銷售該產品數(shù)量的中位數(shù)和平均數(shù);

2)該企業(yè)與電商簽訂銷售合同時規(guī)定:如果電商平臺當月的銷售件數(shù)不低于40萬件,當月獎勵該電商平臺10萬元;大于等于30萬件且小于40萬件,當月獎勵該電商平臺5萬元;當月低于30萬件沒有獎勵,用該樣本估計總體,從電商平臺一個年度內任取兩個月,記這兩個月企業(yè)發(fā)給電商平臺的獎金為萬元,求的分布列.

查看答案和解析>>

科目: 來源: 題型:

【題目】謝爾賓斯基三角形(Sierpinskitriangle)是一種分形幾何圖形,由波蘭數(shù)學家謝爾賓斯基在1915年提出,它是一個自相似的例子,其構造方法是:

1)取一個實心的等邊三角形(圖1);

2)沿三邊中點的連線,將它分成四個小三角形;

3)挖去中間的那一個小三角形(圖2);

4)對其余三個小三角形重復(1)(2)(3)(4)(圖3.

制作出來的圖形如圖4,圖5,….

若圖3(陰影部分)的面積為1,則圖5(陰影部分)的面積為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案