相關習題
 0  265942  265950  265956  265960  265966  265968  265972  265978  265980  265986  265992  265996  265998  266002  266008  266010  266016  266020  266022  266026  266028  266032  266034  266036  266037  266038  266040  266041  266042  266044  266046  266050  266052  266056  266058  266062  266068  266070  266076  266080  266082  266086  266092  266098  266100  266106  266110  266112  266118  266122  266128  266136  266669 

科目: 來源: 題型:

【題目】我國古代在珠算發(fā)明之前多是用算籌為工具來記數(shù)、列式和計算的.算籌實際上是一根根相同長度的小木棍,如圖,算籌表示數(shù)19的方法有“縱式”和“橫式”兩種,規(guī)定個位數(shù)用縱式,十位數(shù)用橫式,百位數(shù)用縱式,千位數(shù)用橫式,萬位數(shù)用縱式,…,以此類推,交替使用縱橫兩式.例如:627可以表示為“.如果用算籌表示一個不含“0”且沒有重復數(shù)字的三位數(shù),這個數(shù)至少要用7根小木棍的概率為( )

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知動圓與圓 相切,且與圓 相內(nèi)切,記圓心的軌跡為曲線.設為曲線上的一個不在軸上的動點, 為坐標原點,過點的平行線交曲線, 兩個不同的點.

(Ⅰ)求曲線的方程;

(Ⅱ)試探究的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;

(Ⅲ)記的面積為, 的面積為,令,求的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】從某學校高三年級共1000名男生中隨機抽取50人測量身高,據(jù)測量,被測學生身高全部介于之間,將測量結(jié)果按如下方式分成八組:第一組,第二組,…,第八組.如圖是按上述分組方法得到的頻率分布直方圖的一部分.其中第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.

(1)求第六組、第七組的頻率,并估計高三年級全體男生身高在以上(含)的人數(shù);

(2)學校決定讓這五十人在運動會上組成一個高旗隊,在這五十人中要選身高在以上(含)的兩人作為隊長,求這兩人在同一組的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知正項數(shù)列滿足4Sn=an2+2an+1.

(1)求數(shù)列{an}的通項公式;

(2)設bn= ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:

【題目】小趙和小王約定在早上7:007:15之間到某公交站搭乘公交車去上學,已知在這段時間內(nèi),共有2班公交車到達該站,到站的時間分別為7:05,7:15,如果他們約定見車就搭乘,則小趙和小王恰好能搭乘同一班公交車去上學的概率為(

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知a0,函數(shù)fx)=|2x+2|+|xa|的最小值為2

1)求實數(shù)a的值,并作出yfx)的圖象;

2)當m0,n0,且m+n2時,m2+n2fx)恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為α為參數(shù)),曲線C2的參數(shù)方程為β為參數(shù)).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.

1)求曲線C1C2的極坐標方程;

2)若點A在曲線C1上,點B在曲線C2上,且∠AOB,求|OA||OB|的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)fxa2xkR,a0,e為自然對數(shù)的底數(shù)),且曲線fx)在點(1,f1))處的切線的斜率為e2a2

1)求實數(shù)k的值,并討論函數(shù)fx)的單調(diào)性;

2)設函數(shù)gx,若對x1∈(0,+∞),x2R,使不等式fx2gx1)﹣1成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,點C在以AB為直徑的圓上運動,PA⊥平面ABC,且PAAC,DE分別是PCPB的中點.

1)求證:PC⊥平面ADE

2)若二面角CAEB60°,求直線AB與平面ADE所成角的大。

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓Ox2+y23上的一動點Mx軸上的投影為N,點P滿足

1)求動點P的軌跡C的方程;

2)若直線l與圓O相切,且交曲線C于點A,B,試求|AB|的最大值.

查看答案和解析>>

同步練習冊答案