科目: 來源: 題型:
【題目】請你設(shè)計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形斜邊的兩個端點,設(shè)AE=FB=xcm2
(1)若廣告商要求包裝盒側(cè)面積S(cm)最大,試問x應(yīng)取何值?
(2)若廣告商要求包裝盒容積V(cm)最大,試問x應(yīng)取何值?并求出此時包裝盒的高與底面邊長的比值。
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)為平面直角坐標(biāo)系xOy中的點集,從中的任意一點P作x軸、y軸的垂線,垂足分別為M,N,記點M的橫坐標(biāo)的最大值與最小值之差為x(),點N的縱坐標(biāo)的最大值與最小值之差為y().若是邊長為1的正方形,給出下列三個結(jié)論:
①x(Q)的最大值為
②x(Q)+y(Q)的取值范圍是
③x(Q)-y(Q)恒等于0.
其中所有正確結(jié)論的序號是_________
查看答案和解析>>
科目: 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓,過的焦點且垂直于軸的直線被截得的弦長為,橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)經(jīng)過右焦點的直線與交于,兩點,線段的垂直平分線與軸相交于點,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】某大學(xué)為了調(diào)查該校學(xué)生性別與身高的關(guān)系,對該校1000名學(xué)生按照的比例進(jìn)行抽樣調(diào)查,得到身高頻數(shù)分布表如下:
男生身高頻率分布表
男生身高 (單位:厘米) | ||||||
頻數(shù) | 7 | 10 | 19 | 18 | 4 | 2 |
女生身高頻數(shù)分布表
女生身高 (單位:厘米) | ||||||
頻數(shù) | 3 | 10 | 15 | 6 | 3 | 3 |
(1)估計這1000名學(xué)生中女生的人數(shù);
(2)估計這1000名學(xué)生中身高在的概率;
(3)在樣本中,從身高在的女生中任取2名女生進(jìn)行調(diào)查,求這2名學(xué)生身高在的概率.(身高單位:厘米)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)的導(dǎo)函數(shù)為.
(1)若對任意恒成立,求實數(shù)的取值范圍;
(2)若函數(shù)的極值為正數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】圓周率是圓的周長與直徑的比值,一般用希臘字母表示.早在公元480年左右,南北朝時期的數(shù)學(xué)家祖沖之就得出精確到小數(shù)點后7位的結(jié)果,他是世界上第一個把圓周率的數(shù)值計算到小數(shù)點后第7位的人,這比歐洲早了約1000年.生活中,我們也可以通過如下隨機模擬試驗來估計的值:在區(qū)間內(nèi)隨機取個數(shù),構(gòu)成個數(shù)對,設(shè),能與1構(gòu)成鈍角三角形三邊的數(shù)對有對,則通過隨機模擬的方法得到的的近似值為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】從編號為1,2,3,4,…,10的10個大小、形狀相同的小球中,任取5個球.如果某兩個球的編號相鄰,則稱這兩個球為一組“好球”.
(1)求任取的5個球中至少有一組“好球”的概率;
(2)在任取的5個球中,記“好球”的組數(shù)為X,求隨機變量X的概率分布列和均值E(X).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com