已知函數(shù)滿足,且是偶函數(shù),當時,,若在區(qū)間內,函數(shù)有4個零點,則實數(shù)的取值范圍是(   )
A.B.C.D.
C.

試題分析:由題意,知函數(shù)的周期為2,又有當時,,則可知在區(qū)間內,函數(shù)的圖像如下圖所示,函數(shù)有4個零點,即函數(shù)與直線(恒過點(-1,0))有4個交點,由圖像易知
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某市電力公司在電力供不應求時期,為了居民節(jié)約用電,采用“階梯電價”方法計算電價,每月用電不超過度時,按每度元計費,每月用電超過度時,超過部分按每度元計費,每月用電超過度時,超過部分按每度元計費
(Ⅰ)設每月用電度,應交電費元,寫出關于的函數(shù);
(Ⅱ)已知小王家第一季度繳費情況如下:
月份
1
2
3
合計
繳費金額
87元
62元
45元8角
194元8角
問:小王家第一季度共用了多少度電?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若非零函數(shù)對任意實數(shù)均有,且當
(1)求證:;
(2)求證:為R上的減函數(shù);
(3)當時, 對時恒有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知點,函數(shù)的圖象上的動點軸上的射影為,且點在點的左側.設,的面積為.

(Ⅰ)求函數(shù)的解析式及的取值范圍;
(Ⅱ)求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),且的解集為.
(Ⅰ)求的值;
(Ⅱ)若,且,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

對于函數(shù)若存在,使得成立,則稱的不動點.
已知
(1)當時,求函數(shù)的不動點;
(2)若對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍;
(3)在(2)的條件下,若圖象上、兩點的橫坐標是函數(shù)的不動點,且、兩點關于直線對稱,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的零點所在區(qū)間是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的零點一定位于區(qū)間(   ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

,則                  .

查看答案和解析>>

同步練習冊答案