分析 (1)圓環(huán)下降過程中,圓環(huán)與A組成的系統(tǒng)機(jī)械能守恒,由此可得質(zhì)量關(guān)系式,進(jìn)而由幾何關(guān)系分析AB的位移關(guān)系,可得兩物體的質(zhì)量關(guān)系.
(2)由圓環(huán)與A組成的系統(tǒng)機(jī)械能守恒,結(jié)合可得此時(shí)AB速度關(guān)系,可得質(zhì)量關(guān)系.
(3)當(dāng)m>>M時(shí)可認(rèn)為B下落過程機(jī)械能守恒,此時(shí)B的速度為其下降速度的極限值,由機(jī)械能守恒可得最終速度.
解答 解:(1)若圓環(huán)恰好能下降h=3m,由機(jī)械能守恒定律得:
mgh=MghA,
由幾何關(guān)系可得:
h2+l2=$(l+{h}_{A})^{2}$
解得兩個(gè)物體的質(zhì)量應(yīng)滿足關(guān)系 M=3m
(2)若圓環(huán)下降h=3m時(shí)的速度v=5m/s,由機(jī)械能守恒定律得:
mgh=MghA+$\frac{1}{2}m{v}^{2}$+$\frac{1}{2}M{v}_{A}^{2}$
如圖所示,A、B的速度關(guān)系為:vA=vcosθ=v$\frac{h}{\sqrt{{h}^{2}+{l}^{2}}}$
解得兩個(gè)物體的質(zhì)量關(guān)系為 $\frac{M}{m}$=$\frac{35}{29}$
(3)B的質(zhì)量比A的大得越多,圓環(huán)下降h=3m時(shí)的速度越大,當(dāng)m>>M時(shí)可認(rèn)為B下落過程機(jī)械能守恒,有 mgh=$\frac{1}{2}m{v}_{m}^{2}$
解得圓環(huán)的最大速度 vm=$\sqrt{60}$m/s=7.75m/s
即圓環(huán)下降h=3m時(shí)的速度不可能超過7.75m/s.
答:
(1)若圓環(huán)恰能下降h=3m,兩個(gè)物體的質(zhì)量應(yīng)滿足的關(guān)系是M=3m.
(2)若圓環(huán)下降h=3m時(shí)的速度v=5m/s,則兩個(gè)物體的質(zhì)量的關(guān)系是 $\frac{M}{m}$=$\frac{35}{29}$.
(3)不管兩個(gè)物體的質(zhì)量為多大,圓環(huán)下降h=3m時(shí)的速度不可能超過7.75m/s.
點(diǎn)評(píng) 該題的關(guān)鍵是用好系統(tǒng)機(jī)械能守恒這個(gè)知識(shí)點(diǎn);難點(diǎn)是對于B的速度極限值的判斷,其條件是m>>M,即A的質(zhì)量可以忽略,認(rèn)為B的機(jī)械能守恒.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中物理 來源: 題型:解答題
查看答案和解析>>
科目:高中物理 來源: 題型:解答題
查看答案和解析>>
科目:高中物理 來源: 題型:解答題
查看答案和解析>>
科目:高中物理 來源: 題型:多選題
A. | $\frac{T}{3}$ | B. | $\frac{T}{5}$ | C. | $\frac{T}{7}$ | D. | $\frac{T}{9}$ |
查看答案和解析>>
科目:高中物理 來源: 題型:多選題
A. | 若小球處于a位置,則μ=tan(θ+α) | B. | 若小球處于b位置,則μ=0 | ||
C. | 若小球處于c位置,則μ=tan(θ-β) | D. | 若小球處于d位置,則μ=tanθ |
查看答案和解析>>
科目:高中物理 來源: 題型:選擇題
A. | GPS系統(tǒng)的衛(wèi)星軌道半徑是地球同步衛(wèi)星半徑的$\frac{\sqrt{2}}{2}$倍 | |
B. | GPS系統(tǒng)的衛(wèi)星軌道半徑是地球同步衛(wèi)星半徑的$\frac{\root{3}{2}}{2}$倍 | |
C. | GPS系統(tǒng)的衛(wèi)星軌道半徑是地球同步衛(wèi)星半徑的$\sqrt{2}$倍 | |
D. | GPS系統(tǒng)的衛(wèi)星軌道半徑是地球同步衛(wèi)星半徑的$\root{3}{2}$倍 |
查看答案和解析>>
科目:高中物理 來源: 題型:解答題
查看答案和解析>>
科目:高中物理 來源: 題型:選擇題
A. | 0 | B. | φ0 | C. | $\frac{{φ}_{0}}{2}$ | D. | 2φ0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com