15.已知sin(π-α)=$\frac{4}{5}$,且α是第一象限的角,則cos(α+$\frac{π}{4}$)的值為-$\frac{\sqrt{2}}{10}$.

分析 利用誘導(dǎo)公式求得sinα的值、可得cosα的值,再利用兩角和差的余弦公式求得cos(α+$\frac{π}{4}$)的值.

解答 解:∵sin(π-α)=sinα=$\frac{4}{5}$,且α是第一象限的角,∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{3}{5}$,
則cos(α+$\frac{π}{4}$)=cosαcos$\frac{π}{4}$-sinαsin$\frac{π}{4}$=$\frac{3}{5}•\frac{\sqrt{2}}{2}$-$\frac{4}{5}•\frac{\sqrt{2}}{2}$=-$\frac{\sqrt{2}}{10}$,
故答案為:$-\frac{{\sqrt{2}}}{10}$.

點評 本題主要考查誘導(dǎo)公式、兩角和差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在平面直角坐標(biāo)系xOy中,若直線l:x-2y+m-1=0在y軸上的截距為$\frac{1}{2}$,則實數(shù)m的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知定義在R上的函數(shù)f(x)=$\frac{2}{1+{2}^{x}}$-1.
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷并證明f(x)的單調(diào)性;
(3)若f(2-t2)+f(t)<0,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.對于問題:“已知關(guān)于x的不等式ax2+bx+c>0的解集為(-1,2),解關(guān)于x的不等式ax2-bx+c>0”,給出如下一種解法:
解:由ax2+bx+c>0的解集為(-1,2),得a(-x)2+b(-x)+c>0的解集為(-2,1),
即關(guān)于x的不等式ax2-bx+c>0的解集為(-2,1).
參考上述解法,若關(guān)于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集為(-1,-$\frac{1}{2}$)∪($\frac{1}{3}$,1),則關(guān)于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集為(-3,-1)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若某公司從5位大學(xué)畢業(yè)生甲、乙、丙、丁、戊中錄用3人,這5人被錄用的機會均等,則甲、乙同時被錄用的概率為( 。
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.圓C1:(x+2)2+(y+3)2=25與C2:(x-2)2+(y-3)2=4的位置關(guān)系是( 。
A.內(nèi)切B.相交C.相離D.外切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某程序框圖如圖所示,則該程序運行后輸出的值是( 。
A.0B.-1C.-2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)l,m是兩條不同的直線,α,β是兩個不重合的平面,給出下列四個命題:
①若α∥β,l⊥α,則l⊥β;  ②若l∥m,l?α,m?β,則α∥β;
③若m⊥α,l⊥m,則l∥α;  ④若α⊥β,l?α,m?β,則l⊥m.
其中真命題的序號為( 。
A.②③B.C.③④D.①④③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某工作小組男女生共8人,現(xiàn)從男生中選2人,女生中選1人,去做3項不同的工作,每人一項,共有36種不同的選法,則男女生人數(shù)各為(  )
A.2,6B.5,3C.3,5D.6,2

查看答案和解析>>

同步練習(xí)冊答案