在光滑的直角坐標系xOy水平面的第一象限內(nèi)分布有磁感應強度的大小為B、方向垂直紙面向內(nèi)的勻強磁場。在xOy平面內(nèi)放置一單匝矩形導線框abcd,線框邊長ab = L、ad = 2L,電阻為R,質(zhì)量為mt = 0時,bc邊與Oy軸重合,線框以初速度υ0沿x軸正方向進入磁場,不計空氣阻力。
(1)求cd邊剛進入磁場時,c、d間的電勢差U;
(2)試討論求線框最終速度大小及對應的初速度υ0的范圍;

(3)求線框進入磁場的過程中通過導線橫截面的電荷量q大小;
【猜題理由】電磁感應問題是近年江蘇高考的必考的內(nèi)容,往年高考中沒有同時考查瞬時感應電動勢和平均感應電動勢,2010年高考很可能以討論運動狀態(tài)、微積分等難度設(shè)置高門檻作為壓軸題,以法拉第電磁感應定律、閉合電路歐姆定律、部分電路歐姆定律、動量定理為規(guī)律命題。

【標準解答】⑴線框cd邊剛進入磁場時,切割磁感線的速度為υ0,線框中電動勢大小  

E = B Lυ0············································································································· ①(1分)

導線中的電流大小
I =  ············································································································· ②(1分)

c、d間的電勢差
U = I · R = BLυ0  ······················································································· ③(1分)

(2)線框進入磁場的過程中速度為υ時,受到的安培力
F = BiL = B L = ········································································· ④(1分)
tt + Δt時間內(nèi),由動量定理
     FΔtmΔυ··································································································· ⑤(1分)
求和得  υt =mΔυ
x < 2L時,線框速度為零,以后保持靜止狀態(tài),則
 ∑△x = x = 0 ········································································· ⑥(1分)
解得   x =   ························································································ ⑦(1分)
即線框的初速度υ0滿足 0 < υ0 < 時,線框最終速度為零。  ················· ⑧(1分)
x ≥ 2L時,線框速度不為零,而速度υ沿x軸正方向做勻速直線運動,則
∑△x =  · 2L = 0 – mυ································································· ⑨(1分)
υ = υ0 ···························································································· ⑩(1分)
即線框的初速度υ0滿足υ0 時,線框最終速度大小為υ0 。 (11)(1分)
(3)導線框的平均感應電動勢為
=   ··································································································· (12)(1分)

導線框中的電流為
 = ······································································································· (13)(1分)
線框進入磁場的過程中通過導線橫截面的電荷量
q = t ····································································································· (14)(1分)
q =
當 0 < υ0 < 時,△Ф= B · Lx = ,得q = ···················· (15)(1分)
υ0 時,△Ф= B · 2L2,得  q = ······································· (16)(1分)

【思維點拔】對于(1)、(2)兩問要搞清瞬時感應電動勢和平均感應電動勢的區(qū)別,c、d間的電勢差U是指作為電源的cd邊的端電壓,求通過導線橫截面的電荷量時要用平均感應電動勢來解。本題難點在于要知道線框最終可能停止運動,也可能勻速運動,所以要進行討論。進入磁場的過程,受到的安培力是變力,無法用動力學觀點直接求解,可以用動量定理結(jié)合微積分求出位移,然后算出對應的電荷量。

練習冊系列答案
相關(guān)習題

科目:高中物理 來源: 題型:

(2007?廣東模擬)質(zhì)量m=4kg的質(zhì)點靜止在光滑水平面上的直角坐標系的原點O,先用沿+x軸方向的力F1=8N作用了2s,然后撤去F1;再用沿+y方向的力F2=24N作用了1s.則質(zhì)點在這3s內(nèi)的軌跡為( 。

查看答案和解析>>

科目:高中物理 來源: 題型:

在光滑的水平面上有一直角坐標系,現(xiàn)有一個質(zhì)量m=0.1kg的小球,從y軸正半軸上的P1點以速度v0=0.6m/s垂直于y軸射入.已知小球在y>0的空間內(nèi)受到一個恒力F1的作用,方向沿y軸負方向,在y<0的空間內(nèi)小球受到一平行于水平面、大小不變F2的作用,且F2的方向與小球的速度方向始終垂直.現(xiàn)小球從P1點進入坐標系后,經(jīng)x=1.2m的P2點與x軸正方向成53°角射入y<0的空間,最后從y軸負半軸上的P3點垂直于y軸射出.如圖所示,(已知:sin53°=0.8,cos53°=0.6).求:
(1)P1點的坐標
(2)F1的大小
(3)F2的大。

查看答案和解析>>

科目:高中物理 來源: 題型:

(2013?浙江模擬)如圖1所示,水平面內(nèi)的直角坐標系的第一象限有磁場分布,方向垂直于水平面向下,磁感應強度沿y軸方向沒有變化,與橫坐標x的關(guān)系如圖2所示,圖線是雙曲線(坐標軸是漸進線);頂角θ=45°的光滑金屬長導軌 MON固定在水平面內(nèi),ON與x軸重合,一根與ON垂直的長導體棒在水平向右的外力作用下沿導軌MON向右滑動,導體棒在滑動過程中始終保持與導軌良好接觸.已知t=0時,導體棒位于頂角O處;導體棒的質(zhì)量為m=2kg;OM、ON接觸處O點的接觸電阻為R=0.5Ω,其余電阻不計;回路電動勢E與時間t的關(guān)系如圖3所示,圖線是過原點的直線.求:
(1)t=2s時流過導體棒的電流強度I2的大。
(2)1~2s時間內(nèi)回路中流過的電量q的大;
(3)導體棒滑動過程中水平外力F(單位:N)與橫坐標x(單位:m)的關(guān)系式.

查看答案和解析>>

科目:高中物理 來源: 題型:

在水平光滑的絕緣桌面內(nèi)建立如圖所示的直角坐標系,在虛線MON兩側(cè)區(qū)域分別稱為區(qū)域一和區(qū)域二,其中一個區(qū)域內(nèi)有勻強電場,另一個區(qū)域內(nèi)有磁感應強度為B、方向垂直桌面的勻強磁場.現(xiàn)有一個質(zhì)量為m、帶電量為+q的小球P從坐標為(-L,0)的A點處由靜止釋放后,沿x軸運動至坐標原點O時,與另一與P球完全相同但不帶電的靜止小球Q發(fā)生碰撞并粘在一起,此后沿x軸正方向第一次經(jīng)y軸進入?yún)^(qū)域二,經(jīng)過一段時間,從坐標(-L,L)的C點回到區(qū)域一.若整個過程中,小球P帶電量保持不變且P、Q兩球可視為質(zhì)點.
(1)指出哪個區(qū)域是電場、哪個區(qū)域是磁場以及電場和磁場的方向;
(2)求電場強度的大。
(3)求小球P、Q第三次經(jīng)過y軸的位置.

查看答案和解析>>

同步練習冊答案