如圖,輪A和輪B之間無相對滑動,輪B和輪C共軸轉(zhuǎn)動.已知輪B的半徑為r,輪A半徑為2r,輪C半徑為4r,當輪A勻速轉(zhuǎn)動時,輪A、B、C邊緣上的三個點( 。
分析:同緣傳動邊緣點線速度相等;同軸傳動角速度相等;根據(jù)公式v=rω列式求解.
解答:解:輪A與輪B同緣傳動,邊緣點線速度相等,故vA=vB;
輪B與輪C同軸傳動,角速度相等,故ωBC;
A、輪B與輪C的線速度之比為
vB
vC
=
rωB
4r?ωC
=
1
4
,故vA:vB:vC=1:1:4,故A正確;
B、輪A和輪B的角速度之比為
ωA
ωB
=
vA
rA
vB
rB
=
1
2
,故ωA:ωB:ωC=1:2:2,故B錯誤;
C、根據(jù)a=ω2r=ωv,加速度之比為1:2:8,故C正確;
D、根據(jù)T=
ω
,周期與角速度成反比,故周期之比為2:1:1,故D錯誤;
故選AC.
點評:本題關(guān)鍵明確兩種特殊的傳動(同緣傳動和同軸傳動)的特點,然后結(jié)合公式v=rω列式求解,基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:

如圖,輪A和輪B之間無相對滑動,輪B和輪C共軸轉(zhuǎn)動.已知輪B的半徑為r,A半徑為2r,輪C半徑為4r,當輪A勻速轉(zhuǎn)動時,輪A、B、C邊緣上的三個點( 。

查看答案和解析>>

科目:高中物理 來源:2014屆度四川省高一下學(xué)期3月月考物理卷 題型:選擇題

如圖,輪A和輪B之間無相對滑動,輪B和輪C共軸轉(zhuǎn)動。已知輪B的半徑為r,輪A半徑為2r,輪C半徑為4r,當輪A勻速轉(zhuǎn)動時,輪A、B、C邊緣上的三個點

A.線速度之比為1︰1︰4    

B.角速度之比為2︰1︰1

C.加速度之比為1︰2︰8

D.周期之比為2︰4︰1

 

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

如圖,輪A和輪B之間無相對滑動,輪B和輪C共軸轉(zhuǎn)動。已知輪B的半徑為r,輪A半徑為2r,輪C半徑為4r,當輪A勻速轉(zhuǎn)動時,輪A、B、C邊緣上的三個點


  1. A.
    線速度之比為1︰1︰4
  2. B.
    角速度之比為2︰1︰1
  3. C.
    加速度之比為1︰2︰8
  4. D.
    周期之比為2︰4︰1

查看答案和解析>>

科目:高中物理 來源: 題型:

如圖,輪A和輪B之間無相對滑動,輪B和輪C共軸轉(zhuǎn)動。已知輪B的半徑為r,輪A半徑為2r,輪C半徑為4r,當輪A勻速轉(zhuǎn)動時,輪A、B、C邊緣上的三個點

A.線速度之比為1︰1︰4    

B.角速度之比為2︰1︰1

C.加速度之比為1︰2︰8

D.周期之比為2︰4︰1

 

查看答案和解析>>

同步練習(xí)冊答案