精英家教網(wǎng)如圖所示,兩個
3
4
圓弧軌道固定在水平地面上,半徑R相同,A軌道由金屬凹槽制成,B軌道由金屬圓管制成,均可視為光滑軌道.在兩軌道右側(cè)的正上方分別將金屬小球A和B由靜止釋放,小球距離地面的高度分別用hA和hB表示,對于下述說法中正確的是(  )
A、若hA=hB≥2R,則兩小球都能沿軌道運(yùn)動到最高點(diǎn)
B、若hA=hB=
3R
2
,由于機(jī)械能守恒,兩小球在軌道上上升的最大高度均為
3R
2
C、適當(dāng)調(diào)整hA,可使A小球從軌道最高點(diǎn)飛出后再次進(jìn)入圓形軌道運(yùn)動
D、適當(dāng)調(diào)整hB,可使B小球從軌道最高點(diǎn)飛出后再次進(jìn)入圓形軌道運(yùn)動
分析:小球A恰好能到A軌道的最高點(diǎn)時,軌道對小球無作用力,由重力提供小球的向心力,由牛頓第二定律即可求得小球到達(dá)軌道最高點(diǎn)的最小速度.
小球恰好能到B軌道的最高點(diǎn)時,速度為零,根據(jù)機(jī)械能守恒求出hA和hB.若hA=
3
2
R時,小球A在軌道上上升的最大高度小于
3
2
R.根據(jù)最高點(diǎn)的臨界速度求出小球最高點(diǎn)飛出的水平位移的最小值.
解答:解:A、若小球A恰好能到A軌道的最高點(diǎn)時,由重力提供小球的向心力,由牛頓第二定律得:
  mg=m
v
2
A
R
,vA=
gR

根據(jù)機(jī)械能守恒定律得,mg(hA-2R)=
1
2
m
v
2
A
,解得:hA=
5
2
R;
若小球B恰好能到B軌道的最高點(diǎn)時,在最高點(diǎn)的速度vB=0,根據(jù)機(jī)械能守恒定律得hB=2R.可見,hA=2R時,A不能到達(dá)軌道的最高點(diǎn).故A錯誤,
B、若hB=
3
2
R時,B球到達(dá)軌道上最高點(diǎn)時速度為0,小球B在軌道上上升的最大高度等于
3
2
R.
若hA=
3
2
R時,小球A在到達(dá)最高點(diǎn)前離開軌道,有一定的速度,由機(jī)械能守恒可知,A在軌道上上升的最大高度小于hB=
3
2
R,故B錯誤.
C、小球A從最高點(diǎn)飛出后做平拋運(yùn)動,下落R高度時,水平位移的最小值為 xA=vA
2R
g
=
gR
?
2R
g
=
2
R>R,所以小球A從軌道最高點(diǎn)飛出后一定落在軌道右端口外側(cè).故C錯誤.
D、小球恰好能到B軌道的最高點(diǎn)時,臨界速度為零,適當(dāng)調(diào)整hB,B可以落在軌道右端口處.故D正確.
故選:D
點(diǎn)評:本題是向心力、機(jī)械能守恒定律、平拋運(yùn)動的綜合,關(guān)鍵要抓住A軌道與輕繩系的球模型相似,B軌道與輕桿固定的球模型相似,要注意臨界條件的不同.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:

如圖所示,兩個
3
4
圓弧軌道固定在水平地面上,半徑R相同,A軌道由金屬凹槽制成,B軌道由金屬圓管制成,均可視為光滑軌道.在兩軌道右側(cè)的正上方分別將金屬小球A和B由靜止釋放,小球距離地面的高度分別用hA和hB表示,則下列說法正確的是(  )

查看答案和解析>>

科目:高中物理 來源: 題型:

如圖所示,兩個
3
4
圓弧軌道固定在水平地面上,半徑R相同,A軌道由金屬凹槽制成,B軌道由金屬圓管制成,均可視為光滑軌道.在兩軌道右側(cè)的正上方分別將金屬小球A和B由靜止釋放,小球距離地面的高度分別用hA和hB表示,則下列說法正確的是(  )

查看答案和解析>>

科目:高中物理 來源: 題型:

如圖所示,兩個
3
4
圓弧軌道固定在水平地面上,半徑R相同,A軌道由金屬凹槽制成,B軌道由金屬圓管制成,均可視為光滑軌道.在兩軌道右側(cè)的正上方將質(zhì)量均為m的金屬小球A和B由靜止釋放,小球距離地面的高度分別用hA和hB表示,則下列說法正確的是( 。

查看答案和解析>>

科目:高中物理 來源: 題型:

精英家教網(wǎng)如圖所示,兩個
3
4
圓弧軌道固定在水平地面上,半徑R相同,A軌道由金屬凹槽制成,B軌道由金屬圓管制成,均可視為光滑軌道.在兩軌道右側(cè)的正上方分別將金屬小球A和B由靜止釋放,小球距離地面的高度分別用hA和hB表示,則下列說法正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案