有質量的物體周圍存在著引力場。萬有引力和庫侖力有類似的規(guī)律,因此我們可以用定義靜電場場強的方法來定義引力場的場強。由此可得,與質量為M的質點相距r處的引力場場強的表達式為EG= (              )(萬有引力恒量用G表示)

試題分析:由庫侖定律與電場強度的關系可知,萬有引力為,則引力場場強為
點評:本題難度較小,點電荷的場強公式是根據(jù)庫侖力推導出的,同理應用這種方法可以推導出引力場場強公式
練習冊系列答案
相關習題

科目:高中物理 來源:不詳 題型:單選題

關于萬有引力定律,下列說法中正確的是           (  ).
A.G值的測出使萬有引力定律有了真正的實用價值,是牛頓測出。
B.由F可知,兩物體間距離r減小時,它們之間的引力增大,距離r趨于零時,萬有引力無限大
C.引力常量G的物理意義是:兩個質量都是1 kg的質點相距1 m時相互吸引力為6.67×10-11 N
D.引力常量G值大小與中心天體選擇有關

查看答案和解析>>

科目:高中物理 來源:不詳 題型:單選題

2011年11月3日,“神舟八號”飛船與“天宮一號”目標飛行器成功實施了首次交會對接。任務完成后“天宮一號”經(jīng)變軌升到更高的軌道,等待與“神舟九號”交會對接。變軌前和變軌完成后“天宮一號”的運行軌道均可視為圓軌道,對應的軌道半徑分別為R1、R2,線速度大小分別為v1、v2。則等于
A.B.C.D.

查看答案和解析>>

科目:高中物理 來源:不詳 題型:單選題

設月球繞地球運動的周期為27天,則月球中心到地球中心的距離R1與地球的同步衛(wèi)星(周期為1天)到地球中心的距離R2之比即R1∶R2為  (      )
A.3∶1B.9∶1
C.27∶1D.18∶1

查看答案和解析>>

科目:高中物理 來源:不詳 題型:單選題

兩衛(wèi)星的軌道半徑分別為,且,則兩衛(wèi)星比較,下列說法正確的是
A.衛(wèi)星的運行速率較小B.衛(wèi)星受到地球引力較小
C.衛(wèi)星的運動周期較大D.衛(wèi)星的向心加速度較小

查看答案和解析>>

科目:高中物理 來源:不詳 題型:單選題

冥王星是太陽系中圍繞太陽旋轉的天體。它的赤道直徑為2344km、表面積為1700萬平方千米、質量為1.29×1022kg、平均密度為1.1g/cm3、表面重力加速度為0.6m/s2、自轉周期為6天9小時17分,逃逸速度為1.22km/s,假設其繞太陽的運動可看成圓周運動。根據(jù)以上信息,下列說法正確的是(  )
A.冥王星的自轉周期比地球自轉周期大
B.冥王星的公轉線速度一定比地球的公轉線速度大
C.冥王星上的物體至少應獲得1.22km/s的速度才能成為它的衛(wèi)星
D.可以估算出太陽的質量

查看答案和解析>>

科目:高中物理 來源:不詳 題型:單選題

均勻分布在地球赤道平面上空的三顆同步通信衛(wèi)星能夠實現(xiàn)除地球南北極等少數(shù)地區(qū)外的“全球通信”。已知地球半徑為R,地球表面的重力加速度為g,同步衛(wèi)星所在軌道處的重力加速度為g′,地球自轉周期為T,下面列出的是關于三顆衛(wèi)星中任意兩顆衛(wèi)星間距離s的表達式,其中正確的是(    )
A.B.C.D.

查看答案和解析>>

科目:高中物理 來源:不詳 題型:單選題

一顆極地軍用地球偵察衛(wèi)星,繞地球運行周期約為1.4h。月球繞地球運動的軌道半徑約為3.8×105 km,運行周期約為27天,地球半徑約為6400 km。僅用以上提供的信息和數(shù)據(jù)
A.能求出地球的質量
B.能求出地球表面的重力加速度
C.能求出軍用地球偵察衛(wèi)星的質量
D.能求出軍用地球偵察衛(wèi)星的線速度

查看答案和解析>>

科目:高中物理 來源:不詳 題型:單選題

已知引力常量G和下列某組數(shù)據(jù)就能計算出地球的質量,這組數(shù)據(jù)是( )
A.地球繞太陽運行的周期及地球與太陽之間的距離
B.月球繞地球運行的周期及月球與地球之間的距離
C.人造地球衛(wèi)星在地面附近繞行的速度及運行周期
D.若不考慮地球自轉,已知地球的半徑及地球表面重力加速度

查看答案和解析>>

同步練習冊答案