1. 弦AB,CD相交于圓內(nèi)一點E,M是線段EB上的一點,過E點與△DEM外接圓的切線分別交BC,AC于F,G。

設t=AM/AB,試用t表示EF/EG。

2. 設n>=3,考慮一個圓上由2n-1個不同點構(gòu)成的集合E,F(xiàn)給E中恰好k個點染上黑色,如果至少有一對黑點使得這兩個黑點之間的弧上(兩段弧中的某一個)包含恰好E中的n個點,就成這樣的染色方法是“好的”。

試找出對于集合E能保證任意一種染色方法都是“好的”的最小的k值。

3. 試找出所有大于1的正整數(shù)n滿足(2n+1)/n2也是整數(shù)。

4. 試構(gòu)造一個從正有理數(shù)集到正有理數(shù)集的函數(shù)f使

   f(xf(y))=f(x)/y 對任何x,y都成立。

5. 給定一個初始整數(shù)n0>1,兩個玩家A,B根據(jù)下述規(guī)則交替的選擇整數(shù)n1,n2,n3,...:

若A選到了數(shù)1990就獲勝;若B選到了1就獲勝。分別求除滿足下述條件之一的n0

  (1) A有必勝策略;

  (2) B有必勝策略;

  (3) A,B都沒有必勝策略。

6. 求證存在一個凸1990邊形使得所有角都相等并且邊長是12,22,...,19902(順序不定)。

 


同步練習冊答案