2009年高考數(shù)學難點突破專題輔導四
難點4 三個“二次”及關系
三個“二次”即一元二次函數(shù)、一元二次方程、一元二次不等式是中學數(shù)學的重要內容,具有豐富的內涵和密切的聯(lián)系,同時也是研究包含二次曲線在內的許多內容的工具.高考試題中近一半的試題與這三個“二次”問題有關.本節(jié)主要是幫助考生理解三者之間的區(qū)別及聯(lián)系,掌握函數(shù)、方程及不等式的思想和方法.
●難點磁場
已知對于x的所有實數(shù)值,二次函數(shù)f(x)=x2-4ax+2a+12(a∈R)的值都是非負的,求關于x的方程=|a-1|+2的根的取值范圍.
●案例探究
[例1]已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=-bx,其中a、b、c滿足a>b>c,a+b+c=0,(a,b,c∈R).
(1)求證:兩函數(shù)的圖象交于不同的兩點A、B;
(2)求線段AB在x軸上的射影A1B1的長的取值范圍.
命題意圖:本題主要考查考生對函數(shù)中函數(shù)與方程思想的運用能力.屬于★★★★★題目.
知識依托:解答本題的閃光點是熟練應用方程的知識來解決問題及數(shù)與形的完美結合.
錯解分析:由于此題表面上重在“形”,因而本題難點就是一些考生可能走入誤區(qū),老是想在“形”上找解問題的突破口,而忽略了“數(shù)”.
技巧與方法:利用方程思想巧妙轉化.
Δ=4b2-4ac=4(-a-c)2-4ac=4(a2+ac+c2)=4[(a+c2]
∵a+b+c=0,a>b>c,∴a>0,c<0
∴c2>0,∴Δ>0,即兩函數(shù)的圖象交于不同的兩點.
(2)解:設方程ax2+bx+c=0的兩根為x1和x2,則x1+x2=-,x1x2=.
|A1B1|2=(x1-x2)2=(x1+x2)2-4x1x2
∵a>b>c,a+b+c=0,a>0,c<0
[例2]已知關于x的二次方程x2+2mx+2m+1=0.
(1)若方程有兩根,其中一根在區(qū)間(-1,0)內,另一根在區(qū)間(1,2)內,求m的范圍.
(2)若方程兩根均在區(qū)間(0,1)內,求m的范圍.
命題意圖:本題重點考查方程的根的分布問題,屬★★★★級題目.
知識依托:解答本題的閃光點是熟知方程的根對于二次函數(shù)性質所具有的意義.
錯解分析:用二次函數(shù)的性質對方程的根進行限制時,條件不嚴謹是解答本題的難點.
技巧與方法:設出二次方程對應的函數(shù),可畫出相應的示意圖,然后用函數(shù)性質加以限制.
解:(1)條件說明拋物線f(x)=x2+2mx+2m+1與x軸的交點分別在區(qū)間(-1,0)和(1,2)內,畫出示意圖,得
(2)據拋物線與x軸交點落在區(qū)間(0,1)內,列不等式組
(這里0<-m<1是因為對稱軸x=-m應在區(qū)間(0,1)內通過)
●錦囊妙計
1.二次函數(shù)的基本性質
(1)二次函數(shù)的三種表示法:
y=ax2+bx+c;y=a(x-x1)(x-x2);y=a(x-x0)2+n.
(2)當a>0,f(x)在區(qū)間[p,q]上的最大值M,最小值m,令x0= (p+q).
2.二次方程f(x)=ax2+bx+c=0的實根分布及條件.
(1)方程f(x)=0的兩根中一根比r大,另一根比r小a?f(r)<0;
(4)二次方程f(x)=0在區(qū)間(p,q)內只有一根f(p)?f(q)<0,或f(p)=0(檢驗)或f(q)=0(檢驗)檢驗另一根若在(p,q)內成立.
(5)方程f(x)=0兩根的一根大于p,另一根小于q(p<q).
3.二次不等式轉化策略
(1)二次不等式f(x)=ax2+bx+c≤0的解集是:(-∞,α)∪[β,+∞a<0且f(α)=f(β)=0;
(2)當a>0時,f(α)<f(β) |α+|<|β+|,當a<0時,f(α)<f(β)|α+|>
(3)當a>0時,二次不等式f(x)>0在[p,q]恒成立或
●殲滅難點訓練
一、選擇題
1.(★★★★)若不等式(a-2)x2+2(a-2)x-4<0對一切x∈R恒成立,則a的取值范圍是( )
2.(★★★★)設二次函數(shù)f(x)=x2-x+a(a>0),若f(m)<0,則f(m-1)的值為( )
A.正數(shù) B.負數(shù)
C.非負數(shù) D.正數(shù)、負數(shù)和零都有可能
二、填空題
3.(★★★★★)已知二次函數(shù)f(x)=4x2-2(p-2)x-2p2-p+1,若在區(qū)間[-1,1]內至少存在一個實數(shù)c,使f(c)>0,則實數(shù)p的取值范圍是_________.
4.(★★★★★)二次函數(shù)f(x)的二次項系數(shù)為正,且對任意實數(shù)x恒有f(2+x)=f(2-x),若f(1-2x2)<f(1+2x-x2),則x的取值范圍是_________.
三、解答題
6.(★★★★)如果二次函數(shù)y=mx2+(m-3)x+1的圖象與x軸的交點至少有一個在原點的右側,試求m的取值范圍.
8.(★★★★)一個小服裝廠生產某種風衣,月銷售量x(件)與售價P(元/件)之間的關系為P=160-2x,生產x件的成本R=500+30x元.
(1)該廠的月產量多大時,月獲得的利潤不少于1300元?
(2)當月產量為多少時,可獲得最大利潤?最大利潤是多少元?
難點磁場
解:由條件知Δ≤0,即(-4a)2-4(2a+12)≤0,∴-≤a≤2
(1)當-≤a<1時,原方程化為:x=-a2+a+6,∵-a2+a+6=-(a-)2+.
∴當a=1時,xmin=6,當a=2時,xmax=12,∴6≤x≤12.
殲滅難點訓練
一、1.解析:當a-2=0即a=2時,不等式為-4<0,恒成立.∴a=2,當a-2≠0時,則a滿足,解得-2<a<2,所以a的范圍是-2<a≤2.
答案:C
2.解析:∵f(x)=x2-x+a的對稱軸為x=,且f(1)>0,則f(0)>0,而f(m)<0,∴m∈(0,1),
∴m-1<0,∴f(m-1)>0.
答案:A
二、3.解析:只需f(1)=-2p2-3p+9>0或f(-1)=-2p2+p+1>0即-3<p<或-<p<1.∴p∈(-3, ).
4.解析:由f(2+x)=f(2-x)知x=2為對稱軸,由于距對稱軸較近的點的縱坐標較小,
∴|1-2x2-2|<|1+2x-x2-2|,∴-2<x<0.
答案:-2<x<0
三、5.解:(1)由loga得logat-3=logty-3logta
∴l(xiāng)ogay=x2-3x+3,即y=a (x≠0).
(2)令u=x2-3x+3=(x-)2+ (x≠0),則y=au
①若0<a<1,要使y=au有最小值8,
則u=(x-)2+在(0,2上應有最大值,但u在(0,2上不存在最大值.
②若a>1,要使y=au有最小值8,則u=(x-)2+,x∈(0,2應有最小值
6.解:∵f(0)=1>0
(1)當m<0時,二次函數(shù)圖象與x軸有兩個交點且分別在y軸兩側,符合題意.
綜上所述,m的取值范圍是{m|m≤1且m≠0}.
,由于f(x)是二次函數(shù),故p≠0,又m>0,所以,pf()<0.
(2)由題意,得f(0)=r,f(1)=p+q+r
若r>0,則f(0)>0,又f()<0,所以f(x)=0在(0,)內有解;
若r≤0,則f(1)=p+q+r=p+(m+1)=(-)+r=>0,
②當p<0時同理可證.
8.解:(1)設該廠的月獲利為y,依題意得?
y=(160-2x)x-(500+30x)=-2x2+130x-500
由y≥1300知-2x2+130x-500≥1300
∴x2-65x+900≤0,∴(x-20)(x-45)≤0,解得20≤x≤45
∴當月產量在20~45件之間時,月獲利不少于1300元.
(2)由(1)知y=-2x2+130x-500=-2(x-)2+1612.5
∵x為正整數(shù),∴x=32或33時,y取得最大值為1612元,
∴當月產量為32件或33件時,可獲得最大利潤1612元.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com