2009年高考數(shù)學難點突破專題輔導二十二
難點22 軌跡方程的求法
求曲線的軌跡方程是解析幾何的兩個基本問題之一.求符合某種條件的動點的軌跡方程,其實質就是利用題設中的幾何條件,用“坐標化”將其轉化為尋求變量間的關系.這類問題除了考查學生對圓錐曲線的定義,性質等基礎知識的掌握,還充分考查了各種數(shù)學思想方法及一定的推理能力和運算能力,因此這類問題成為高考命題的熱點,也是同學們的一大難點.
●難點磁場
(★★★★)已知A、B為兩定點,動點M到A與到B的距離比為常數(shù)λ,求點M的軌跡方程,并注明軌跡是什么曲線.
●案例探究
[例1]如圖所示,已知P(4,0)是圓x2+y2=36內的一點,A、B是圓上兩動點,且滿足∠APB=90°,求矩形APBQ的頂點Q的軌跡方程.
命題意圖:本題主要考查利用“相關點代入法”求曲線的軌跡方程,屬★★★★★級題目.
知識依托:利用平面幾何的基本知識和兩點間的距離公式建立線段AB中點的軌跡方程.
錯解分析:欲求Q的軌跡方程,應先求R的軌跡方程,若學生思考不深刻,發(fā)現(xiàn)不了問題的實質,很難解決此題.
技巧與方法:對某些較復雜的探求軌跡方程的問題,可先確定一個較易于求得的點的軌跡方程,再以此點作為主動點,所求的軌跡上的點為相關點,求得軌跡方程.
解:設AB的中點為R,坐標為(x,y),則在Rt△ABP中,|AR|=|PR|.
又因為R是弦AB的中點,依垂徑定理:在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x2+y2)
所以有(x-4)2+y2=36-(x2+y2),即x2+y2-4x-10=0
因此點R在一個圓上,而當R在此圓上運動時,Q點即在所求的軌跡上運動.
設Q(x,y),R(x1,y1),因為R是PQ的中點,所以x1=,
代入方程x2+y2-4x-10=0,得
整理得:x2+y2=56,這就是所求的軌跡方程.
[例2]設點A和B為拋物線 y2=4px(p>0)上原點以外的兩個動點,已知OA⊥OB,OM⊥AB,求點M的軌跡方程,并說明它表示什么曲線.(2000年北京、安徽春招)
命題意圖:本題主要考查“參數(shù)法”求曲線的軌跡方程,屬★★★★★級題目.
知識依托:直線與拋物線的位置關系.
錯解分析:當設A、B兩點的坐標分別為(x1,y1),(x2,y2)時,注意對“x1=x2”的討論.
技巧與方法:將動點的坐標x、y用其他相關的量表示出來,然后再消掉這些量,從而就建立了關于x、y的關系.
解法一:設A(x1,y1),B(x2,y2),M(x,y)依題意,有
①-②得(y1-y2)(y1+y2)=4p(x1-x2)
①×②,得y12?y22=16p2x1x2
③代入上式有y1y2=-16p2 ⑦
即4px-y12=y(y1+y2)-y12-y1y2
⑦、⑧代入上式,得x2+y2-4px=0(x≠0)
當x1=x2時,AB⊥x軸,易得M(4p,0)仍滿足方程.
故點M的軌跡方程為x2+y2-4px=0(x≠0)它表示以(2p,0)為圓心,以2p為半徑的圓,去掉坐標原點.
解法二:設M(x,y),直線AB的方程為y=kx+b
由y2=4px及y=kx+b,消去y,得k2x2+(2kb-4p)x+b2=0
故y=kx+b=k(x-4p),用k=-代入,得x2+y2-4px=0(x≠0)
故動點M的軌跡方程為x2+y2-4px=0(x≠0),它表示以(2p,0)為圓心,以2p為半徑的圓,去掉坐標原點.
[例3]某檢驗員通常用一個直徑為2 cm和一個直徑為1 cm的標準圓柱,檢測一個直徑為3 cm的圓柱,為保證質量,有人建議再插入兩個合適的同號標準圓柱,問這兩個標準圓柱的直徑為多少?
命題意圖:本題考查“定義法”求曲線的軌跡方程,及將實際問題轉化為數(shù)學問題的能力,屬★★★★★級題目.
知識依托:圓錐曲線的定義,求兩曲線的交點.
錯解分析:正確理解題意及正確地將此實際問題轉化為數(shù)學問題是順利解答此題的關鍵.
技巧與方法:研究所給圓柱的截面,建立恰當?shù)淖鴺讼,找到動圓圓心的軌跡方程.
解:設直徑為3,2,1的三圓圓心分別為O、A、B,問題轉化為求兩等圓P、Q,使它們與⊙O相內切,與⊙A、⊙B相外切.
建立如圖所示的坐標系,并設⊙P的半徑為r,則
|PA|+|PO|=1+r+1.5-r=2.5
∴點P在以A、O為焦點,長軸長2.5的橢圓上,其方程為
同理P也在以O、B為焦點,長軸長為2的橢圓上,其方程為
●錦囊妙計
求曲線的軌跡方程常采用的方法有直接法、定義法、代入法、參數(shù)法.
(1)直接法 直接法是將動點滿足的幾何條件或者等量關系,直接坐標化,列出等式化簡即得動點軌跡方程.
(2)定義法 若動點軌跡的條件符合某一基本軌跡的定義(如橢圓、雙曲線、拋物線、圓等),可用定義直接探求.
(3)相關點法 根據(jù)相關點所滿足的方程,通過轉換而求動點的軌跡方程.
(4)參數(shù)法 若動點的坐標(x,y)中的x,y分別隨另一變量的變化而變化,我們可以以這個變量為參數(shù),建立軌跡的參數(shù)方程.
求軌跡方程,一定要注意軌跡的純粹性和完備性.要注意區(qū)別“軌跡”與“軌跡方程”是兩個不同的概念.
●殲滅難點訓練
一、選擇題
1.(★★★★)已知橢圓的焦點是F1、F2,P是橢圓上的一個動點,如果延長F1P到Q,使得|PQ|=|PF2|,那么動點Q的軌跡是( )
A.圓 B.橢圓
C.雙曲線的一支 D.拋物線
二、填空題
4.(★★★★)高為5 m和3 m的兩根旗桿豎在水平地面上,且相距10 m,如果把兩旗桿底部的坐標分別確定為A(-5,0)、B(5,0),則地面觀測兩旗桿頂端仰角相等的點的軌跡方程是_________.
三、解答題
5.(★★★★)已知A、B、C是直線l上的三點,且|AB|=|BC|=6,⊙O′切直線l于點A,又過B、C作⊙O′異于l的兩切線,設這兩切線交于點P,求點P的軌跡方程.
7.(★★★★★)已知雙曲線=1(m>0,n>0)的頂點為A1、A2,與y軸平行的直線l交雙曲線于點P、Q.
(1)求直線A1P與A2Q交點M的軌跡方程;
(2)當m≠n時,求所得圓錐曲線的焦點坐標、準線方程和離心率.
解:建立坐標系如圖所示,
設|AB|=2a,則A(-a,0),B(a,0).
設M(x,y)是軌跡上任意一點.
(1-λ2)x2+(1-λ2)y2+2a(1+λ2)x+(1-λ2)a2=0
(1)當λ=1時,即|MA|=|MB|時,點M的軌跡方程是x=0,點M的軌跡是直線(y軸).
(2)當λ≠1時,點M的軌跡方程是x2+y2+x+a2=0.點M的軌跡是以
殲滅難點訓練
一、1.解析:∵|PF1|+|PF2|=2a,|PQ|=|PF2|,
∴|PF1|+|PF2|=|PF1|+|PQ|=2a,
即|F1Q|=2a,∴動點Q到定點F1的距離等于定長2a,故動點Q的軌跡是圓.
答案:A
2.解析:設交點P(x,y),A1(-3,0),A2(3,0),P1(x0,y0),P2(x0,-y0)
答案:C
二、3.解析:由sinC-sinB=sinA,得c-b=a,
4.解析:設P(x,y),依題意有,化簡得P點軌跡方程為4x2+4y2-85x+100=0.
答案:4x2+4y2-85x+100=0
三、5.解:設過B、C異于l的兩切線分別切⊙O′于D、E兩點,兩切線交于點P.由切線的性質知:|BA|=|BD|,|PD|=|PE|,|CA|=|CE|,故|PB|+|PC|=|BD|+|PD|+|PC|=|BA|+|PE|+|PC|
=|BA|+|CE|=|AB|+|CA|=6+12=18>6=|BC|,故由橢圓定義知,點P的軌跡是以B、C為兩焦點的橢圓,以l所在的直線為x軸,以BC的中點為原點,建立坐標系,可求得動點P的軌跡方程為=1(y≠0)
6.解:設P(x0,y0)(x≠±a),Q(x,y).
∵A1(-a,0),A2(a,0).
而點P(x0,y0)在雙曲線上,∴b2x02-a2y02=a2b2.
化簡得Q點的軌跡方程為:a2x2-b2y2=a4(x≠±a).
7.解:(1)設P點的坐標為(x1,y1),則Q點坐標為(x1,-y1),又有A1(-m,0),A2(m,0),
(2)當m≠n時,M的軌跡方程是橢圓.
(?)當m>n時,焦點坐標為(±,0),準線方程為x=±,離心率e=;
(?)當m<n時,焦點坐標為(0,±),準線方程為y=±,離心率e=.
8.解:(1)∵點F2關于l的對稱點為Q,連接PQ,
∴∠F2PR=∠QPR,|F2R|=|QR|,|PQ|=|PF2|
又因為l為∠F1PF2外角的平分線,故點F1、P、Q在同一直線上,設存在R(x0,y0),Q(x1,y1),F1(-c,0),F2(c,0).
|F1Q|=|F2P|+|PQ|=|F1P|+|PF2|=2a,則(x1+c)2+y12=(2a)2.
得x1=2x0-c,y1=2y0.
∴(2x0)2+(2y0)2=(2a)2,∴x02+y02=a2.
故R的軌跡方程為:x2+y2=a2(y≠0)
(2)如右圖,∵S△AOB=|OA|?|OB|?sinAOB=sinAOB
在Rt△AOC中,∠AOC=45°,
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com