2,4,6 A.三角形 B.四邊形 C.五邊形 D.六邊形
試題詳情
3.已知是公比為2的等比數(shù)列,則的值為
試題詳情
試題詳情
4.吉林省生物制品廠生產(chǎn)了一批藥品,它們來自甲、乙、丙三條生產(chǎn)線,其中來自甲生產(chǎn)線1000件,來自乙生產(chǎn)線2000件,來自丙生產(chǎn)線3000件,現(xiàn)采用分層抽樣的方法對這批藥品進行抽樣檢測,抽取的樣品數(shù)為24件.則從乙生產(chǎn)線抽取的樣品數(shù)是
A.4件 B.6件 C.8件 D.12件
試題詳情
5. 給出下面的三個命題:①函數(shù)的最小正周期是②函數(shù)
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
8.設函數(shù),下列結(jié)論中正確的是
試題詳情
試題詳情
試題詳情
試題詳情
D.函數(shù)無極值
試題詳情
試題詳情
10. 已知對稱軸為坐標軸的雙曲線的兩條漸近線方程為,若雙曲線上有一點,使,則雙曲線焦點 A.在x軸上 B.在y軸上
試題詳情
C.當時,在x軸上 D.當時,在y軸上
試題詳情
11. 已知,則在數(shù)列{an}的前50項中最小項和最大項分別是
試題詳情
試題詳情
12.若函數(shù)在區(qū)間內(nèi)單調(diào)遞增,則a的取值范圍是
試題詳情
試題詳情
二、填空題:本大題共4小題,每小題5分,共20分.把答案填寫在答題紙相應位置上. 13.二項式的展開式中的常數(shù)項為_____________(用數(shù)字作答).
試題詳情
試題詳情
15.已知函數(shù),則__________.
試題詳情
16.設函數(shù),給出下列4個命題:
試題詳情
試題詳情
③的圖象關于點對稱; ④方程至多有2個實數(shù)根 上述命題中的所有正確命題的序號是
.
試題詳情
三、解答題:本大題共6小題,共70分.解答應寫出文字說明,證明過程或演算步驟.
試題詳情
在△ABC中,a,b,c分別為角A,B,C所對的三邊, (Ⅰ)求角A;
試題詳情
(Ⅱ)若BC=2,角B等于x,周長為y,求函數(shù)的取值范圍.
試題詳情
試題詳情
從“神七”飛船帶回的某種植物種子由于在太空中被輻射,我們把它們稱作“太空種子”. 這種“太空種子”成功發(fā)芽的概率為,發(fā)生基因突變的概率為,種子發(fā)芽與發(fā)生基因突變是兩個相互獨立事件.科學家在實驗室對“太空種子”進行培育,從中選出優(yōu)良品種. (Ⅰ)這種“太空種子”中的某一粒種子既發(fā)芽又發(fā)生基因突變的概率是多少? (Ⅱ)四粒這種“太空種子”中至少有兩粒既發(fā)芽又發(fā)生基因突變的概率是多少?
試題詳情
試題詳情
已知函數(shù)
試題詳情
試題詳情
(Ⅱ)在(Ⅰ)的條件下,設. 是否存在最小正整數(shù), 使得對任意, 有恒成立?若存在,求出m的值;若不存在,請說明理由
試題詳情
試題詳情
如圖,已知在直四棱柱中,
試題詳情
試題詳情
(I)求證:平面;
試題詳情
(II)求二面角的余弦值.
試題詳情
試題詳情
試題詳情
(Ⅰ)當時,求函數(shù)的極值和單調(diào)遞增區(qū)間;
試題詳情
(Ⅱ)求證:.
試題詳情
試題詳情
試題詳情
(II)當,且滿足時,求弦長的取值范圍. 河南省實驗中學2008――2009年度(文)高三第二次月考答案
試題詳情
一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的). 1.B 2 D. 3.B 4.C 5.C 6.C 7.B 8.C 9.D 10.B
試題詳情
試題詳情
二、填空題:本大題共4小題,每小題5分,共20分.把答案填寫在答題紙相應位置上. 13.240 14.1 15. 16.
①②③
試題詳情
三、解答題:本大題共6小題,共70分.解答應寫出文字說明,證明過程或演算步驟.
試題詳情
解:(Ⅰ)由
試題詳情
試題詳情
(Ⅱ)
試題詳情
同理:
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
解:(Ⅰ)記“這批太空種子中的某一粒種子既發(fā)芽又發(fā)生基因突變”為事件,則.
試題詳情
(Ⅱ)
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
設g(n)= ,∵g(n)= 在n∈N*上是減函數(shù), ∴g(n)的最大值是g(1)=5,
試題詳情
∴m>5,存在最小正整數(shù)m=6,使對任意n∈N*有bn<成立
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
平面,
試題詳情
(II)由(I)知平面,
試題詳情
試題詳情
試題詳情
試題詳情
為二面角的平面角.
試題詳情
試題詳情
試題詳情
試題詳情
.
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
(II)設為平面的一個法向量.
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
,
試題詳情
試題詳情
試題詳情
∴當時, 取得極大值.
試題詳情
∴即.
試題詳情
試題詳情
則有 ,
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
試題詳情
遞增 極大值4 遞減 極小值0 遞增
試題詳情
試題詳情
試題詳情
.
試題詳情
試題詳情
解:(I)依題意,可知,
試題詳情
∴ ,解得
試題詳情
∴橢圓的方程為
試題詳情
試題詳情
由,得,
試題詳情
試題詳情
∴,
試題詳情
試題詳情
,
試題詳情
∴
試題詳情
∴
∴,
試題詳情
∴
試題詳情
試題詳情
試題詳情
|