絕密★啟用前

2006年普通高等學(xué)校招生全國統(tǒng)一考試(山東卷)

理科數(shù)學(xué)(必修+選修II)

 本試卷分第I卷(選擇題)和第II卷(非選擇題)兩部分,第I卷1至2頁,第II卷3至10頁,滿分150分,考試用時(shí)120分鐘,考試結(jié)束后,將本試卷和答題卡一并交回。

第I卷(共60分)

注意事項(xiàng):

1.       答第I卷前,考生務(wù)必將自己的姓名,準(zhǔn)考證號(hào),考試科目涂寫在答題卡上。

2.       每小題選出答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑。如需改動(dòng),用橡皮檫干凈后,再選其他答案標(biāo)號(hào),不能答在試題卷上。

參考公式:

如果事件A、B互斥,那么PA+B)=P(A)+P(B)

如果事件AB相互獨(dú)立,P(A?B)=P(A)?P(B)

一、選擇題:本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,選擇一個(gè)符合題目要求的選項(xiàng).

1.用鋼筆或圓珠筆直接答在試題卷中。

試題詳情

2.答卷前將密封線內(nèi)的項(xiàng)目填寫清楚。

 

 

得分

評(píng)卷人

 

 

(13)若          .

(14)已知拋物線y2=4x,過點(diǎn)P(4,0)的直線與拋物線相交于A(x1,y1),B(x2,y2)兩點(diǎn),則y12+y22的最小值是          .

(15)如圖,已知正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都相等,DA1C1的 中點(diǎn),則直線AD 與平面B1DC所成角的正弦值為            .

                                                                (15題圖)

(16)下列四個(gè)命題中,真命題的序號(hào)有                  (寫出所有真命題的序號(hào)).

①將函數(shù)y=的圖象按向量y=(-1,0)平移,得到的圖象對(duì)應(yīng)的函數(shù)表達(dá)式為y=

②圓x2+y2+4x-2y+1=0與直線y=相交,所得弦長(zhǎng)為2

③若sin(+)=  ,則sin(+)=,則tancot=5

④如圖,已知正方體ABCD- A1B1C1D1P為底面ABCD內(nèi)一動(dòng)點(diǎn),P到平面AA1D1D的距離與到直線CC1的距離相等,則P點(diǎn)的軌跡是拋物線的一部分.

(16題圖)

 

得分

評(píng)卷人

 

 

 

(17)已知f(x)=Asin()(A>0,>0,0<<函數(shù),且y=f(x)的最大值為2,其圖象相鄰兩對(duì)稱軸的距離為2,并過點(diǎn)(1,2).

(1)求;

(2)計(jì)算f(1)+f(2)+… +f(2 008).

得分

評(píng)卷人

 

 

 

(18)(本小題滿分12分)

設(shè)函數(shù)f(x)=ax-(a+1)ln(x+1),其中a-1,求f(x)的單調(diào)區(qū)間。

得分

評(píng)卷人

 

 

 

(19)(本小題滿分12分)

如圖ABC-A1B1C1,已知平面平行于三棱錐V-A1B1C1的底面ABC,等邊∆ AB1C所在的平面與底面ABC垂直,且ABC=90°,設(shè)AC=2a,BC=a.

(1)求證直線B1C1是異面直線與A1C1的公垂線;

(2)求點(diǎn)A到平面VBC的距離;

(3)求二面角A-VB-C的大小.

(19題圖)

 

 

 

 

 

 

得分

評(píng)卷人

 

 

 

(20) (本小題滿分12分)

袋中裝著標(biāo)有數(shù)學(xué)1,2,3,4,5的小球各2個(gè),從袋中任取3個(gè)小球,按3個(gè)小球上最大數(shù)字的9倍計(jì)分,每個(gè)小球被取出的可能性都相等,用表示取出的3個(gè)小球上的最大數(shù)字,求:

(1)取出的3個(gè)小球上的數(shù)字互不相同的概率;

(2)隨機(jī)變量的概率分布和數(shù)學(xué)期望;

(3)計(jì)分介于20分到40分之間的概率.

得分

評(píng)卷人

 

 

 

 

(21)(本小題滿分12分)

雙曲線C與橢圓有相同的熱點(diǎn),直線y=為C的一條漸近線.

(1)       求雙曲線C的方程;

(2)       過點(diǎn)P(0,4)的直線l,求雙曲線CA,B兩點(diǎn),交x軸于Q點(diǎn)(Q點(diǎn)與C的頂點(diǎn)不重合).當(dāng) =,且時(shí),求Q點(diǎn)的坐標(biāo).

得分

評(píng)卷人

 

 

 

(22)(本小題滿分14分)

已知a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=x2+2x的圖象上,其中=1,2,3,…

(1)       證明數(shù)列{lg(1+an)}是等比數(shù)列;

(2)       設(shè)Tn=(1+a1) (1+a2) …(1+an),求Tn及數(shù)列{an}的通項(xiàng);

試題詳情

三、解答題:本大題共6小題,共74分.解答應(yīng)寫出文字說明,證明過程或演算步驟.

(3)       記bn=,求{bn}數(shù)列的前項(xiàng)和Sn,并證明Sn+=1.

 

 

 

 

 

 

 

 

 

 

試題詳情

(1)―(12)DACBD     BBAAD    CC

(13) 2      (14) 32     (15)     (16)34  

 

(1)定義集合運(yùn)算:AB={z?z= xy(x+y),xA,yB},設(shè)集合A={0,1},B={2,3},則集合AB的所有元素之和為( D  )

(A)0       (B)6           (C)12                 (D)18

解:當(dāng)x=0時(shí),z=0,當(dāng)x=1,y=2時(shí),z=6,當(dāng)x=1,y=3時(shí),z=12,故所有元素之和為18,選D

(2)函數(shù)y=1+ax(0<a<1)的反函數(shù)的圖象大致是( A  )

 

 

 

 

 

   (A)            (B)           (C)               (D)

解:函數(shù)y=1+ax(0<a<1)的反函數(shù)為,它的圖象是函數(shù)向右移動(dòng)1個(gè)單位得到,選A

(3)設(shè)f(x)=  則不等式f(x)>2的解集為(  C )

(A)(1,2)(3,+∞)                 (B)(,+∞)

(C)(1,2) ( ,+∞)            (D)(1,2)

解:令>2(x<2),解得1<x<2。令>2(x³2)解得xÎ(,+∞)

選C

(4)在△ABC中,角AB、C的對(duì)邊分別為a、b、c,A=,a=,b=1,則c=(  B  )

(B)   1          (B)2           (C)―1           (D)

解:由正弦定理可得sinB=,又a>b,所以A>B,故B=30°,所以C=90°,故c=2,選B

(5)設(shè)向量a=(1,-3),b=(-2,4),c=(-1,-2),若表示向量4a,4b-2c,2(ac),d的有向線段首尾相連能構(gòu)成四邊形,則向量d為(  D )

(A)(2,6)         (B)(-2,6)         (C)(2,-6)              (D)(-2,-6)

解:設(shè)d=(x,y),因?yàn)?a=(4,-12),4b-2c=(-6,20),2(ac)=(4,-2),依題意,有4a+(4b-2c)+2(ac)+d0,解得x=-2,y=-6,選D

(6)已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),則,f(6)的值為( B  )

(A)-1           (B) 0             (C)   1                 (D)2

解:因?yàn)?i>f(x)是定義在R上的奇函數(shù),所以f(0)=0,又fx+4)=-fx+2)=fx),故函數(shù)

fx)的周期為4,所以f(6)=f(2)=-f(0)=0,選C

  

(7)在給定橢圓中,過焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為1,則該橢圓的離心率為(  B )

(A)          (B)            (C)                   (D)

解:不妨設(shè)橢圓方程為(a>b>0),則有,據(jù)此求出e=,選B

  (8)設(shè)px-x20>0,q:<0,則pq的(  A  )

(A)充分不必要條件                      (B)必要不充分條件

(C)充要條件                            (D)既不充分也不必要條件

解:px-x20>0Ûx>5或x<-4,q:<0Ûx<-2或-1<x<1或x>2,借助圖形知選A

(9)已知集合A={5},B={1,2},C={1,3,4},從這三個(gè)集合中各取一個(gè)元素構(gòu)成空間直角坐標(biāo)系中點(diǎn)的坐標(biāo),則確定的不同點(diǎn)的個(gè)數(shù)為(  A )

(A)33         (B) 34           (C) 35               (D)36

解:不考慮限定條件確定的不同點(diǎn)的個(gè)數(shù)為=36,但集合B、C中有相同元素1,由5,1,1三個(gè)數(shù)確定的不同點(diǎn)的個(gè)數(shù)只有三個(gè),故所求的個(gè)數(shù)為36-3=33個(gè),選A

(10)已知的展開式中第三項(xiàng)與第五項(xiàng)的系數(shù)之比為-,其中=-1,則展開式中常數(shù)項(xiàng)是( A   )

(A)-45i      (B) 45i        (C) -45            (D)45

解:第三項(xiàng)的系數(shù)為-,第五項(xiàng)的系數(shù)為,由第三項(xiàng)與第五項(xiàng)的系數(shù)之比為-可得n=10,

則=,令40-5r=0,解得r=8,故所求的常數(shù)項(xiàng)為=45,選A

(11)某公司招收男職員x名,女職員y名,xy須滿足約束條件則z=10x+10y的最大值是(C    )

(A)80      (B) 85         (C) 90           (D)95

解:畫出可行域:

易得A(5.5,4.5)且當(dāng)直線z=10x+10y過A點(diǎn)時(shí),

z取得最大值,此時(shí)z=90,選C

 

 

 

 

 

 

 

 

 

 

 

 

(12)如圖,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,EAB的中點(diǎn),將△ADE與△BEC分別沿ED、EC向上折起,使A、B重合于點(diǎn)P,則P-DCE三棱錐的外接球的體積為(  C  )

(A)     (B)       (C)          (D) 

 

 

                                       

                                             (12題圖)

          

 

 

 

 

 

 

 

 

解:易證所得三棱錐為正四面體,它的棱長(zhǎng)為1,故外接球半徑為,外接球的體積為,選C

絕密★啟用前

2006年普通高等學(xué)校招生全國統(tǒng)一考試(山東卷)

理科數(shù)學(xué)(必修+選修II)

注意事項(xiàng):

1.用鋼筆或圓珠筆直接答在試題卷中。

2.答卷前將密封線內(nèi)的項(xiàng)目填寫清楚。

 

 

得分

評(píng)卷人

 

 

二、填空題:本大題共4小題,每小題4分,共16分.答案須填在題中橫線上.

(13)若  2        .

解:      

 

 

 

(14)已知拋物線y2=4x,過點(diǎn)P(4,0)的直線與拋物線相交于A(x1,y1),B(x2,y2)兩點(diǎn),則的最小值是  32        .

解:顯然³0,又=4()³8,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以所求的值為32。

(15)如圖,已知正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都相等,DA1C1的 中點(diǎn),則直線AD 與平面B1DC所成角的正弦值為            .

 

                                                                (15題圖)

 

 

 

 

解:易證B1^平面AC1,過A點(diǎn)作AG^CD,則

AG^平面B1DC,于是ÐADG即ÐADC為直線AD 與平面B1DC所成角,由平面幾何知識(shí)可求得它的正弦值為。

 

(16)下列四個(gè)命題中,真命題的序號(hào)有                  (寫出所有真命題的序號(hào)).

①將函數(shù)y=的圖象按向量y=(-1,0)平移,得到的圖象對(duì)應(yīng)的函數(shù)表達(dá)式為y=

②圓x2+y2+4x-2y+1=0與直線y=相交,所得弦長(zhǎng)為2

③若sin(+)=,sin(-)=,則tancot=5

④如圖,已知正方體ABCD- A1B1C1D1,P為底面ABCD內(nèi)一動(dòng)點(diǎn),P到平面AA1D1D的距離與到直線CC1的距離相等,則P點(diǎn)的軌跡是拋物線的一部分.

解:①錯(cuò)誤,得到的圖象對(duì)應(yīng)的函數(shù)表達(dá)式應(yīng)為y=|x-2|

②錯(cuò)誤,圓心坐標(biāo)為(-2,1),到直線y=的距離為

>半徑2,故圓與直線相離,                        

         

③正確,sin(+)==sincos+cossin

sin(-)=sincos-cossin=

兩式相加,得2 sincos=,

兩式相減,得2 cossin=,故將上兩式相除,即得tancot=5

④正確,點(diǎn)P到平面AD1的距離就是點(diǎn)P到直線AD的距離,

                 

點(diǎn)P到直線CC1就是點(diǎn)P到點(diǎn)C的距離,由拋物線的定義

可知點(diǎn)P的軌跡是拋物線。

                                                            (16題圖)

                       

 

三.解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟。

17.(本小題滿分12分)

已知函數(shù),且的最大值為2,其圖象相鄰兩對(duì)稱軸間的距離為2,并過點(diǎn)(1,2).

(I)求

(II)計(jì)算.

解:(I)

的最大值為2,.

又其圖象相鄰兩對(duì)稱軸間的距離為2,,

.

過點(diǎn),

.

(II)解法一:,

.

又的周期為4,,

解法二:

又的周期為4,,

 

18.(本小題滿分12分)設(shè)函數(shù),其中,求的單調(diào)區(qū)間.

解:由已知得函數(shù)的定義域?yàn),?/p>

(1)當(dāng)時(shí),函數(shù)在上單調(diào)遞減,

(2)當(dāng)時(shí),由解得

、隨的變化情況如下表

0

+

極小值

從上表可知

當(dāng)時(shí),函數(shù)在上單調(diào)遞減.

當(dāng)時(shí),函數(shù)在上單調(diào)遞增.

綜上所述:

當(dāng)時(shí),函數(shù)在上單調(diào)遞減.

當(dāng)時(shí),函數(shù)在上單調(diào)遞減,函數(shù)在上單調(diào)遞增.

 

19.(本小題滿分12分)

如圖,已知平面平行于三棱錐的底面ABC,等邊△所在的平面與底面ABC垂直,且∠ACB=90°,設(shè)

(1)求證直線是異面直線與的公垂線;

(2)求點(diǎn)A到平面VBC的距離;

(3)求二面角的大小。

 

解法1:

(Ⅰ)證明:∵平面∥平面,

又∵平面⊥平面,平面∩平面,

∴⊥平面,

,

又,.

為與的公垂線.

(Ⅱ)解法1:過A作于D,

         ∵△為正三角形,

∴D為的中點(diǎn).

∵BC⊥平面

∴,

又,

∴AD⊥平面,

∴線段AD的長(zhǎng)即為點(diǎn)A到平面的距離.

在正△中,.

∴點(diǎn)A到平面的距離為.

解法2:取AC中點(diǎn)O連結(jié),則⊥平面,且=.

由(Ⅰ)知,設(shè)A到平面的距離為x,

即,解得.

即A到平面的距離為.

所以,到平面的距離為.

(III)過點(diǎn)作于,連,由三重線定理知

是二面角的平面角。

在中,

。

所以,二面角的大小為arctan.

解法二:

取中點(diǎn)連,易知底面,過作直線交。

取為空間直角坐標(biāo)系的原點(diǎn),所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系。則。

(I),,

。

    又

由已知。

,

而。

又顯然相交,

是的公垂線。

(II)設(shè)平面的一個(gè)法向量,

  又

  由

取 得

點(diǎn)到平面的距離,即在平面的法向量上的投影的絕對(duì)值。

,設(shè)所求距離為。

       則

             

             

              所以,A到平面VBC的距離為.

(III)設(shè)平面的一個(gè)法向量

                      

由                                 

                       

取    

二面角為銳角,

所以,二面角的大小為

 

20.(本小題滿分12分)

袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個(gè),從袋中任取3個(gè)小球,按3個(gè)小球上最大數(shù)字的9倍計(jì)分,每個(gè)小球被取出的可能性都相等。用ξ表示取出的3個(gè)小球上的最大數(shù)字,求:

(1)取出的3個(gè)小球上的數(shù)字互不相同的概率;

(2)隨機(jī)變量ξ的概率分布和數(shù)學(xué)期望;

(3)計(jì)分介于20分到40分之間的概率。

 

解:(I)解法一:“一次取出的3個(gè)小球上的數(shù)字互不相同”的事件記為,

解法二:“一次取出的3個(gè)小球上的數(shù)字互不相同的事件記為A”,“一次取出的3個(gè)小球上有兩個(gè)數(shù)字相同”的事件記為,則事件和事件是互斥事件,因?yàn)?/p>

所以.

(II)由題意有可能的取值為:2,3,4,5.

所以隨機(jī)變量的概率分布為

2

3

4

5

 

因此的數(shù)學(xué)期望為

(Ⅲ)“一次取球所得計(jì)分介于20分到40分之間”的事件記為,則

 

21.(本小題滿分12分)

雙曲線C與橢圓有相同的焦點(diǎn),直線為C的一條漸近線。

(1)求雙曲線C的方程;

(2)過點(diǎn)的直線,交雙曲線C于A、B兩點(diǎn),交軸于Q點(diǎn)(Q點(diǎn)與C的頂點(diǎn)不重合),當(dāng),且時(shí),求點(diǎn)的坐標(biāo)。

 

解:(Ⅰ)設(shè)雙曲線方程為

    由橢圓 

求得兩焦點(diǎn)為,

對(duì)于雙曲線,又為雙曲線的一條漸近線

  解得 ,

雙曲線的方程為

(Ⅱ)解法一:

由題意知直線的斜率存在且不等于零。

設(shè)的方程:,

在雙曲線上,

同理有:

若則直線過頂點(diǎn),不合題意.

是二次方程的兩根.

,

此時(shí).

所求的坐標(biāo)為.

解法二:

由題意知直線的斜率存在且不等于零

設(shè)的方程,,則.

,

分的比為.

由定比分點(diǎn)坐標(biāo)公式得

下同解法一

解法三:

由題意知直線的斜率存在且不等于零

設(shè)的方程:,則.

,

.

,,

又,

將代入得

,否則與漸近線平行。

。

解法四:

由題意知直線l得斜率k存在且不等于零,設(shè)的方程:,

,

同理      

.

即    。                                    (*)

消去y得.

當(dāng)時(shí),則直線l與雙曲線得漸近線平行,不合題意,。

由韋達(dá)定理有:

代入(*)式得    

所求Q點(diǎn)的坐標(biāo)為。

 

22.(本小題滿分14分)

已知,點(diǎn)在函數(shù)的圖象上,其中

(1)證明數(shù)列是等比數(shù)列;

(2)設(shè),求及數(shù)列的通項(xiàng);

(3)記,求數(shù)列的前項(xiàng),并證明

 

解:(Ⅰ)由已知,

             

             

              ,兩邊取對(duì)數(shù)得

,

是公比為2的等比數(shù)列.

(Ⅱ)由(Ⅰ)知

                                 (*)

             

                    

                     =

              由(*)式得

(Ⅲ)

               

               

                    

         

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案