0  821  829  835  839  845  847  851  857  859  865  871  875  877  881  887  889  895  899  901  905  907  911  913  915  916  917  919  920  921  923  925  929  931  935  937  941  947  949  955  959  961  965  971  977  979  985  989  991  997  1001  1007  1015  3002 

2009年高中畢業(yè)班第三次質(zhì)量預(yù)測(cè)

試題詳情

 

2009年高中畢業(yè)班第三次質(zhì)量預(yù)測(cè)

試題詳情

 

1995年全國(guó)普通高等學(xué)校招生統(tǒng)一考試歷史試題

 

試題詳情

 

1994年全國(guó)普通高等學(xué)校招生統(tǒng)一考試歷史試題

 

試題詳情

1993年普通高等學(xué)校招生全國(guó)統(tǒng)一考試歷史試題

 

試題詳情

第三單元:圓周運(yùn)動(dòng)

  [內(nèi)容和方法]

  本單元內(nèi)容包括圓周運(yùn)動(dòng)的動(dòng)力學(xué)部分和物體做圓周運(yùn)動(dòng)的能量問(wèn)題,其核心內(nèi)容是牛頓第二定律、機(jī)械能守恒定律等知識(shí)在圓周運(yùn)動(dòng)中的具體應(yīng)用。

  本單元中所涉及到的基本方法與第二單元牛頓定律的方法基本相同,只是在具體應(yīng)用知識(shí)的過(guò)程中要注意結(jié)合圓周運(yùn)動(dòng)的特點(diǎn):物體所受外力在沿半徑指向圓心的合力才是物體做圓周運(yùn)動(dòng)的向心力,因此利用矢量合成的方法分析物體的受力情況同樣也是本單元的基本方法;只有物體所受的合外力的方向沿半徑指向圓心,物體才做勻速圓周運(yùn)動(dòng)。根據(jù)牛頓第二定律合外力與加速度的瞬時(shí)關(guān)系可知,當(dāng)物體在圓周上運(yùn)動(dòng)的某一瞬間的合外力指向圓心,我們?nèi)钥梢杂门nD第二定律對(duì)這一時(shí)刻列出相應(yīng)的牛頓定律的方程,如豎直圓周運(yùn)動(dòng)的最高點(diǎn)和最低點(diǎn)的問(wèn)題。另外,由于在具體的圓周運(yùn)動(dòng)中,物體所受除重力以外的合外力總指向圓心,與物體的運(yùn)動(dòng)方向垂直,因此向心力對(duì)物體不做功,所以物體的機(jī)械能守恒。

  [例題分析]

  在本單元知識(shí)應(yīng)用的過(guò)程中,初學(xué)者常犯的錯(cuò)誤主要表現(xiàn)在:對(duì)物體做圓周運(yùn)動(dòng)時(shí)的受力情況不能做出正確的分析,特別是物體在水平面內(nèi)做圓周運(yùn)動(dòng),靜摩擦力參與提供向心力的情況;對(duì)牛頓運(yùn)動(dòng)定律、圓周運(yùn)動(dòng)的規(guī)律及機(jī)械能守恒定律等知識(shí)內(nèi)容不能綜合地靈活應(yīng)用,如對(duì)于被繩(或桿、軌道)束縛的物體在豎直面的圓周運(yùn)動(dòng)問(wèn)題,由于涉及到多方面知識(shí)的綜合,表現(xiàn)出解答問(wèn)題時(shí)顧此失彼。

  1、 一內(nèi)壁光滑的環(huán)形細(xì)圓管,位于豎直平面內(nèi),環(huán)的半徑為R(比細(xì)管的半徑大得多),圓管中有兩個(gè)直徑與細(xì)管內(nèi)徑相同的小球(可視為質(zhì)點(diǎn))。A球的質(zhì)量為m1,B球的質(zhì)量為m2。它們沿環(huán)形圓管順時(shí)針運(yùn)動(dòng),經(jīng)過(guò)最低點(diǎn)時(shí)的速度都為v0。設(shè)A球運(yùn)動(dòng)到最低點(diǎn)時(shí),球恰好運(yùn)動(dòng)到最高點(diǎn),若要此時(shí)兩球作用于圓管的合力為零,那么m1,m2,R與v0應(yīng)滿足關(guān)系式是。

  【錯(cuò)解分析】錯(cuò)解:依題意可知在A球通過(guò)最低點(diǎn)時(shí),圓管給A球向上的彈力N1為向心力,則有

  B球在最高點(diǎn)時(shí),圓管對(duì)它的作用力N2為m2的向心力,方向向下,則有

  因?yàn)閙2由最高點(diǎn)到最低點(diǎn)機(jī)械能守恒,則有


   錯(cuò)解形成的主要原因是向心力的分析中缺乏規(guī)范的解題過(guò)程。沒(méi)有做受力分析,導(dǎo)致漏掉重力,表面上看分析出了N1=N2,但實(shí)際并沒(méi)有真正明白為什么圓管給m2向下的力?傊畯母旧峡催是解決力學(xué)問(wèn)題的基本功受力分析不過(guò)關(guān)。

  【正確解答】首先畫出小球運(yùn)動(dòng)達(dá)到最高點(diǎn)和最低點(diǎn)的受力圖,如圖4-1所示。A球在圓管最低點(diǎn)必受向上彈力N1,此時(shí)兩球?qū)A管的合力為零,m2必受圓管向下的彈力N2,且N1=N2

  據(jù)牛頓第二定律A球在圓管的最低點(diǎn)有

  同理m2在最高點(diǎn)有

  m2球由最高點(diǎn)到最低點(diǎn)機(jī)械能守恒


  【小結(jié)】 比較復(fù)雜的物理過(guò)程,如能依照題意畫出草圖,確定好研究對(duì)象,逐一分析就會(huì)變?yōu)楹?jiǎn)單問(wèn)題。找出其中的聯(lián)系就能很好地解決問(wèn)題。

  2、 使一小球沿半徑為R的圓形軌道從最低點(diǎn)上升,那么需給它最小速度為多大時(shí),才能使它達(dá)到軌道的最高點(diǎn)?

  【錯(cuò)解分析】錯(cuò)解:如圖4-2所示,根據(jù)機(jī)械能守恒,小球在圓形軌道最高點(diǎn)A時(shí)的勢(shì)能等于它在圓形軌道最低點(diǎn)B時(shí)的動(dòng)能(以B點(diǎn)作為零勢(shì)能位置),所以為

  從而得

   小球到達(dá)最高點(diǎn)A時(shí)的速度vA不能為零,否則小球早在到達(dá)A點(diǎn)之前就離開(kāi)了圓形軌道。要使小球到達(dá)A點(diǎn)(自然不脫離圓形軌道),則小球在A點(diǎn)的速度必須滿足

  式中,NA為圓形軌道對(duì)小球的彈力。上式表示小球在A點(diǎn)作圓周運(yùn)動(dòng)所需要的向心力由軌道對(duì)它的彈力和它本身的重力共同提供。當(dāng)NA=0時(shí),

  【正確解答】以小球?yàn)檠芯繉?duì)象。小球在軌道最高點(diǎn)時(shí),受重力和軌道給的彈力。小球在圓形軌道最高點(diǎn)A時(shí)滿足方程

  根據(jù)機(jī)械能守恒,小球在圓形軌道最低點(diǎn)B時(shí)的速度滿足方程

  解(1),(2)方程組得

 

  
  軌道的最高點(diǎn)A。

  3、 用長(zhǎng)L=1.6m的細(xì)繩,一端系著質(zhì)量M=1kg的木塊,另一端掛在固定點(diǎn)上。現(xiàn)有一顆質(zhì)量m =20g的子彈以v1=500m/s的水平速度向木塊中心射擊,結(jié)果子彈穿出木塊后以v2=100m/s的速度前進(jìn)。問(wèn)木塊能運(yùn)動(dòng)到多高?(取g =10m/s2,空氣阻力不計(jì))

  【錯(cuò)解分析】錯(cuò)解:在水平方向動(dòng)量守恒,有

mv1=Mv+mv2 (1)

  式①中v為木塊被子彈擊中后的速度。木塊被子彈擊中后便以速度v開(kāi)始擺動(dòng)。由于繩子對(duì)木塊的拉力跟木塊的位移垂直,對(duì)木塊不做功,所以木塊的機(jī)械能守恒,即

  h為木塊所擺動(dòng)的高度。解①,②聯(lián)立方程組得到

  v = 8(v/s)

  h = 3.2(m)

   這個(gè)解法是錯(cuò)誤的。h = 3.2m,就是木塊擺動(dòng)到了B點(diǎn)。如圖4-3所示。則它在B點(diǎn)時(shí)的速度vB。應(yīng)滿足方程


  這時(shí)木塊的重力提供了木塊在B點(diǎn)做圓周運(yùn)動(dòng)所需要的向心力。解

  如果vB<4 m/s,則木塊不能升到B點(diǎn),在到達(dá)B點(diǎn)之前的某一位置以某一速度開(kāi)始做斜向上拋運(yùn)動(dòng)。而木塊在B點(diǎn)時(shí)的速度vB=4m/s,是不符合機(jī)械能守恒定律的,木塊在B點(diǎn)時(shí)的能量為(選A點(diǎn)為零勢(shì)能點(diǎn))

  

  兩者不相等?梢(jiàn)木塊升不到B點(diǎn),一定是h<3.2 m。

  實(shí)際上,在木塊向上運(yùn)動(dòng)的過(guò)程中,速度逐漸減小。當(dāng)木塊運(yùn)動(dòng)到某一臨界位置C時(shí),如圖4-4所示,木塊所受的重力在繩子方向的分力恰好等于木塊做圓周運(yùn)動(dòng)所需要的向心力。此時(shí)繩子的拉力為零,繩子便開(kāi)始松弛了。木塊就從這個(gè)位置開(kāi)始,以此刻所具有的速度vc作斜上拋運(yùn)動(dòng)。木塊所能到達(dá)的高度就是C點(diǎn)的高度和從C點(diǎn)開(kāi)始的斜上拋運(yùn)動(dòng)的最大高度之和。

  【正確解答】 如上分析,從式①求得vA= v = 8m/s。木塊在臨界位置C時(shí)的速度為vc,高度為

h′=L(1+cosθ)

  如圖4-4所示,根據(jù)機(jī)械能守恒定律有


  木塊從C點(diǎn)開(kāi)始以速度vc做斜上拋運(yùn)動(dòng)所能達(dá)到的最大高度h″為

  

  【小結(jié)】 物體能否做圓運(yùn)動(dòng),不是我們想象它怎樣就怎樣,這里有一個(gè)需要的向心力和提供向心力能否吻合的問(wèn)題,當(dāng)需要能從實(shí)際提供中找到時(shí),就可以做圓運(yùn)動(dòng)。所謂需要就是符合牛頓第二定律F= ma的力,而提供則是實(shí)際中的力若兩者不相等,則物體將做向心運(yùn)動(dòng)或者離心運(yùn)動(dòng)。

  例4 假如一做圓周運(yùn)動(dòng)的人造地球衛(wèi)星的軌道半徑增大到原來(lái)的2倍,仍做圓周運(yùn)動(dòng),則[ ]

  A.根據(jù)公式v=ωr,可知衛(wèi)星運(yùn)動(dòng)的線速度增大到原來(lái)的2倍。

  
   

  D.根據(jù)上述選項(xiàng)B和C給出的公式,可知衛(wèi)星運(yùn)動(dòng)的線速度將減

  【錯(cuò)解分析】錯(cuò)解:選擇A,B,C

  
                

  所以選擇A,B,C正確。

  A,B,C中的三個(gè)公式確實(shí)是正確的,但使用過(guò)程中A,


  【正確解答】正確選項(xiàng)為C,D。

  A選項(xiàng)中線速度與半徑成正比是在角速度一定的情況下。而r變化時(shí),角速度也變。所以此選項(xiàng)不正確。同理B選項(xiàng)也是如此,F(xiàn)∝1/r2是在v一定時(shí),但此時(shí)v變化,故B選項(xiàng)錯(cuò)。而C選項(xiàng)中G,M,m都是恒量,所以F∝

  【小結(jié)】 物理公式反映物理規(guī)律,不理解死記硬背經(jīng)常會(huì)出錯(cuò)。使用中應(yīng)理解記憶。知道使用條件,且知道來(lái)攏去脈。

  衛(wèi)星繞地球運(yùn)動(dòng)近似看成圓周運(yùn)動(dòng),萬(wàn)有引力提供向心力,由此將

  根據(jù)以上式子得出

   

  5、 從地球上發(fā)射的兩顆人造地球衛(wèi)星A和B,繞地球做勻速圓周運(yùn)動(dòng)的半徑之比為RA∶RB=4∶1,求它們的線速度之比和運(yùn)動(dòng)周期之比。

  設(shè)A,B兩顆衛(wèi)星的質(zhì)量分別為mA,mB。

  
  
  

   這里錯(cuò)在沒(méi)有考慮重力加速度與高度有關(guān)。根據(jù)萬(wàn)有引力定律知道:

  

  可見(jiàn),在“錯(cuò)解”中把A,B兩衛(wèi)星的重力加速度gA,gB當(dāng)作相同的g來(lái)處理是不對(duì)的。

  【正確解答】衛(wèi)星繞地球做勻速圓周運(yùn)動(dòng),萬(wàn)有引力提供向心力,根據(jù)牛頓第二定律有

  

  
    

  【小結(jié)】 我們?cè)谘芯康厍蛏系奈矬w的運(yùn)動(dòng)時(shí),地面附近物體的重力加速度近似看做是恒量。但研究天體運(yùn)動(dòng)時(shí),應(yīng)注意不能將其認(rèn)為是常量,隨高度變化,g值是改變的。

 

 

試題詳情

2009屆 肥 西 三 中 理 綜 試 卷

第一卷(選擇題  共120分)

試題詳情

2009屆高考理綜模擬試卷

命題人:肥西農(nóng)興中學(xué)理綜備課組:徐昌存、董敏、黃德根

 

第Ⅰ卷(選擇題  共120分

試題詳情

 

1992年普通高等學(xué)校招生全國(guó)統(tǒng)一考試歷史試題

 

試題詳情


同步練習(xí)冊(cè)答案