7.若且.那么的最小值是 ( ) A.2 B. C. D.0 查看更多

 

題目列表(包括答案和解析)

a
、
b
是兩個不共線的非零向量(t∈R).
(1)若
a
b
起點相同,t為何值時,若
a
、t
b
、
1
3
a
+
b
)三向量的終點在一直線上?
(2)若|
a
|=|
b
|且
a
b
是夾角為60°,那么t為何值時,|
a
-t
b
|有最?

查看答案和解析>>

a
、
b
是兩個不共線的非零向量(t∈R).
(1)若
a
、
b
起點相同,t為何值時,若
a
、t
b
、
1
3
a
+
b
)三向量的終點在一直線上?
(2)若|
a
|=|
b
|且
a
b
是夾角為60°,那么t為何值時,|
a
-t
b
|有最。

查看答案和解析>>

(2013•湖北)假設每天從甲地去乙地的旅客人數X是服從正態(tài)分布N(800,502)的隨機變量.記一天中從甲地去乙地的旅客人數不超過900的概率為p0
(1)求p0的值;
(參考數據:若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)
(2)某客運公司用A,B兩種型號的車輛承擔甲、乙兩地間的長途客運業(yè)務,每車每天往返一次,A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運成本分別為1600元/輛和2400元/輛.公司擬組建一個不超過21輛車的客運車隊,并要求B型車不多于A型車7輛.若每天要以不小于p0的概率運完從甲地去乙地的旅客,且使公司從甲地去乙地的營運成本最小,那么應配備A型車、B型車各多少輛?

查看答案和解析>>

(2013•湖北)假設每天從甲地去乙地的旅客人數X是服從正態(tài)分布N(800,502)的隨機變量.記一天中從甲地去乙地的旅客人數不超過900的概率為p0
(1)求p0的值;
(參考數據:若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)
(2)某客運公司用A,B兩種型號的車輛承擔甲、乙兩地間的長途客運業(yè)務,每車每天往返一次,A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運成本分別為1600元/輛和2400元/輛.公司擬組建一個不超過21輛車的客運車隊,并要求B型車不多于A型車7輛.若每天要以不小于p0的概率運完從甲地去乙地的旅客,且使公司從甲地去乙地的營運成本最小,那么應配備A型車、B型車各多少輛?

查看答案和解析>>

對于數列{xn},如果存在一個正整數m,使得對任意的n(n∈N*)都有xn+m=xn成立,那么就把這樣一類數列{xn}稱作周期為m的周期數列,m的最小值稱作數列{xn}的最小正周期,以下簡稱周期.例如當xn=2時,{xn}是周期為1的周期數列,當yn=sin(
π
2
n)
時,{yn}的周期為4的周期數列.
(1)設數列{an}滿足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同時為0),且數列{an}是周期為3的周期數列,求常數λ的值;
(2)設數列{an}的前n項和為Sn,且4Sn=(an+1)2
①若an>0,試判斷數列{an}是否為周期數列,并說明理由;
②若anan+1<0,試判斷數列{an}是否為周期數列,并說明理由.
(3)設數列{an}滿足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,數列{bn}的前n項和Sn,試問是否存在p、q,使對任意的n∈N*都有p≤
Sn
n
≤q
成立,若存在,求出p、q的取值范圍;不存在,說明理由.

查看答案和解析>>


同步練習冊答案