17. 在棱長為的斜三棱柱中.已知..,連結(jié). (Ⅰ)求證:⊥平面, (Ⅱ)求二面角的大小. 查看更多

 

題目列表(包括答案和解析)

((本小題滿分12分)
如圖,斜三棱柱-ABC的底面是邊長為2的正三角形,頂點在底面上的射影是△ABC的中心,與AB的夾角是45°

1)求證:⊥平面;
(2)求此棱柱的側(cè)面積 。 

查看答案和解析>>

((本小題滿分12分)

如圖,斜三棱柱-ABC的底面是邊長為2的正三角形,頂點在底面上的射影是△ABC的中心,與AB的夾角是45°

(1)求證:⊥平面;

(2)求此棱柱的側(cè)面積 。 

 

 

查看答案和解析>>

((本小題滿分12分)
如圖,斜三棱柱-ABC的底面是邊長為2的正三角形,頂點在底面上的射影是△ABC的中心,與AB的夾角是45°

1)求證:⊥平面;
(2)求此棱柱的側(cè)面積 。 

查看答案和解析>>

(本題滿分12分)

已知斜三棱柱的各棱長均為2, 側(cè)棱與底面所成角為,且側(cè)面底面.

(1)證明:點在平面上的射影的中點;

(2)求二面角的大小 ;

 

查看答案和解析>>

   (本小題滿分12分)請你設計一個包裝盒,如下圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A、B、C、D四個點重合于圖中的點P,正好形成一個正四棱挪狀的包裝盒E、F在AB上,是被切去的一等腰直角三角形斜邊的兩個端點.設AE= FB=x(cm).

 

 

(I)某廣告商要求包裝盒的側(cè)面積S(cm2)最大,試問x應取何值?

(II)某廠商要求包裝盒的容積V(cm3)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.[

 

查看答案和解析>>


同步練習冊答案