1.如果A={x|x>-1}.那么正確的結(jié)論是 ( ) A.0 A B.{0}∈A C.{0} A D.∈A 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)已知函數(shù)f(x)=2sinx,x∈[0,
π
2
],試寫出f1(x),f2(x)的表達(dá)式,并判斷f(x)是否為[0,
π
2
]上的“k階收縮函數(shù)”,如果是,請求對應(yīng)的k的值;如果不是,請說明理由;
(2)已知b>0,函數(shù)g(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)已知函數(shù)f(x)=2sinx,x∈[0,數(shù)學(xué)公式],試寫出f1(x),f2(x)的表達(dá)式,并判斷f(x)是否為[0,數(shù)學(xué)公式]上的“k階收縮函數(shù)”,如果是,請求對應(yīng)的k的值;如果不是,請說明理由;
(2)已知b>0,函數(shù)g(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)﹣f1(x)≤k(x﹣a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)已知函數(shù)f(x)=2sinx,x∈[0,],試寫出f1(x),f2(x)的表達(dá)式,并判斷f(x)是否為[0,]上的“k階收縮函數(shù)”,如果是,請求對應(yīng)的k的值;如果不是,請說明理由;
(2)已知b>0,函數(shù)g(x)=﹣x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

設(shè)函數(shù)f(x)的定義域?yàn)镈,值域?yàn)锽,如果存在函數(shù)x=g(t),使得函數(shù)y=f(g(t))的值域仍然是B,那么,稱函數(shù)x=g(t)是函數(shù)f(x)的一個等值域變換.
(1)判斷下列x=g(t)是不是f(x)的一個等值域變換?說明你的理由:(A)f(x)=2x+b,x∈R,x=t2-2t+3,t∈R;(B)f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R;
(2)設(shè)f(x)=log2x(x∈R+),g(t)=at2+2t+1,若x=g(t)是f(x)的一個等值域變換,求實(shí)數(shù)a的取值范圍,并指出x=g(t)的一個定義域;
(3)設(shè)函數(shù)f(x)的定義域?yàn)镈,值域?yàn)锽,函數(shù)g(t)的定義域?yàn)镈1,值域?yàn)锽1,寫出x=g(t)是f(x)的一個等值域變換的充分非必要條件(不必證明),并舉例說明條件的不必要性.

查看答案和解析>>

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷曲線,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(t)|t∈D}表示函數(shù)f(t)在D上的最小值,max{f(t)|x∈D}表示函數(shù)f(t)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)已知函數(shù)f(x)=2sinx(0≤x≤
n
2
),試寫出f1(x),f2(x)的表達(dá)式,并判斷f(x)是否為[0,
n
2
]上的“k階收縮函數(shù)”,如果是,請求對應(yīng)的k的值;如果不是,請說明理由;
(2)已知b>0,函數(shù)g(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案