解:①若兩個角是對頂角.則這兩個角相等. ②若四邊形是平行四邊形.則其對角線交于一點且互相平分. ③若一個數是偶數.則這個數能被2整除. ④若二次方程ax2+bx+c=0的判別式△>0.則該方程有兩個不等實根. 查看更多

 

題目列表(包括答案和解析)

如圖,已知橢圓的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
(1)已知橢圓判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請說明理由;
(2)寫出與橢圓C1相似且半短軸長為b的橢圓Cb的方程,并列舉相似橢圓之間的三種性質(不需證明);
(3)已知直線l:y=x+1,在橢圓Cb上是否存在兩點M、N關于直線l對稱,若存在,則求出函數f(b)=|MN|的解析式.

查看答案和解析>>

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
(1)已知橢圓C1
x2
4
+y2=1
C2
x2
16
+
y2
4
=1
判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請說明理由;
(2)寫出與橢圓C1相似且半短軸長為b的橢圓Cb的方程,并列舉相似橢圓之間的三種性質(不需證明);
(3)已知直線l:y=x+1,在橢圓Cb上是否存在兩點M、N關于直線l對稱,若存在,則求出函數f(b)=|MN|的解析式.

查看答案和解析>>

如圖,已知橢圓C:數學公式+數學公式=1(a>b>0)的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
(1)已知橢圓C1數學公式+y2=1和C2數學公式+數學公式=1,判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請說明理由;
(2)已知直線l:y=x+1,在橢圓Cb上是否存在兩點M、N關于直線l對稱,若存在,則求出函數f(b)=|MN|的解析式.

查看答案和解析>>

如圖,已知橢圓C:+=1(a>b>0)的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
(1)已知橢圓C1+y2=1和C2+=1,判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請說明理由;
(2)已知直線l:y=x+1,在橢圓Cb上是否存在兩點M、N關于直線l對稱,若存在,則求出函數f(b)=|MN|的解析式.

查看答案和解析>>

如圖,已知橢圓C:+=1(a>b>0)的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
(1)已知橢圓C1+y2=1和C2+=1,判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請說明理由;
(2)已知直線l:y=x+1,在橢圓Cb上是否存在兩點M、N關于直線l對稱,若存在,則求出函數f(b)=|MN|的解析式.

查看答案和解析>>


同步練習冊答案