(1)由.對其求導(dǎo)得:. 設(shè).則直線的斜率分別為. ∴直線的方程為.即. 同理:直線的方程為. ∴可解得點的坐標(biāo)為. 又點在準(zhǔn)線上.∴.即. ∵.∴.猜想(1)成立.――――――――――4分 (另解:設(shè).則點在直線上.∴.∴是方程的兩根.故.∴.∴.猜想 (2)直線的斜率. ∴直線的方程為.又.∴. 顯然直線過焦點.猜想(2)成立.―――――――――――――8分 (3).. ∴ . 又. ∴. 所以恒成立.為常數(shù).―――――――――――――――12分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)單調(diào)遞減;當(dāng)單調(diào)遞增,故當(dāng)時,取最小值

于是對一切恒成立,當(dāng)且僅當(dāng).       、

當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.

故當(dāng)時,取最大值.因此,當(dāng)且僅當(dāng)時,①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故當(dāng)

從而,

所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>


同步練習(xí)冊答案