對于數(shù)列{x
n},如果存在一個(gè)正整數(shù)m,使得對任意的n(n∈N
*)都有x
n+m=x
n成立,那么就把這樣一類數(shù)列{x
n}稱作周期為m的周期數(shù)列,m的最小值稱作數(shù)列{x
n}的最小正周期,以下簡稱周期.例如當(dāng)x
n=2時(shí),{x
n}是周期為1的周期數(shù)列,當(dāng)
時(shí),{y
n}的周期為4的周期數(shù)列.
(1)設(shè)數(shù)列{a
n}滿足a
n+2=λ•a
n+1-a
n(n∈N
*),a
1+a,a
2=b(a,b不同時(shí)為0),且數(shù)列{a
n}是周期為3的周期數(shù)列,求常數(shù)λ的值;
(2)設(shè)數(shù)列{a
n}的前n項(xiàng)和為S
n,且4S
n=(a
n+1)
2.
①若a
n>0,試判斷數(shù)列{a
n}是否為周期數(shù)列,并說明理由;
②若a
na
n+1<0,試判斷數(shù)列{a
n}是否為周期數(shù)列,并說明理由.
(3)設(shè)數(shù)列{a
n}滿足a
n+2=-a
n+1-a
n(n∈N
*),a
1=1,a
2=2,b
n=a
n+1,數(shù)列{b
n}的前n項(xiàng)和S
n,試問是否存在p、q,使對任意的n∈N
*都有
成立,若存在,求出p、q的取值范圍;不存在,說明理由.