[理]在直棱柱中.已知 (1)求使的充要條件(用表示), (2)求證為銳角, (3)若則是否可能為?證明你的結(jié)論. [文]設(shè)為正數(shù).直角坐標(biāo)平面內(nèi)的點集 (1)畫出A所表示的平面區(qū)域, (2)在平面直角坐標(biāo)系中.規(guī)定時.稱為格點.當(dāng)時.A內(nèi)有幾個格點(本小題只要直接寫出結(jié)果即可), (3)點集A連同它的邊界構(gòu)成的區(qū)域記為.若圓.求的最大值. ------2分 即的充分條件是---------------------------------------------6分 . 為銳角-------------------------------------------------------------------8分 代入上式得. 解得---------------------------------------------------------------11分 若解當(dāng)時.--------------14分 [文] 是三角形三邊長---------------------------------------8分 點集構(gòu)成的平面區(qū)域為等腰直角三角形.如上圖陰影部分表示. 當(dāng)時.內(nèi)有3個格點--------------------------------------------------------10分 為包括邊界的三角形區(qū)域.形內(nèi)的最大圓即是的內(nèi)切圓.其半徑為 -------------------------------------------------------------------------14分 查看更多

 

題目列表(包括答案和解析)

(09年湖南十二校理)(12分)

   如圖,已知在直四棱柱中,,

   (I)求證:平面;

(II)求二面角的余弦值.

查看答案和解析>>

(07年山東卷理)(12分)

如圖,在直四棱柱中,已知

,,.

(I)設(shè)的中點,求證: ;

(II)求二面角的余弦值.

                                                     

查看答案和解析>>

(07年山東卷理)(12分)

如圖,在直四棱柱中,已知

,,.

(I)設(shè)的中點,求證: ;

(II)求二面角的余弦值.

                                                     

查看答案和解析>>

(08年濮陽市摸底考試?yán)恚?nbsp; 在直三棱柱A1B1C1-ABC中,∠BAC=,AB=AC=AA1=1.已知G與E分別為A1B1和CC1的中點,D與F分別為線段AC和AB上的動點(不包括端點).若GD⊥EF,則線段DF的長度的取值范圍為             (    )

    A.[ ,1)    B.[,2)         C.[1,)        D.[,)

查看答案和解析>>

(理)如圖a所示,某地為了開發(fā)旅游資源,欲修建一條連接風(fēng)景點P和居民區(qū)O的公路,點P所在的山坡面與山腳所在水平面α所成的二面角為θ(0°<θ<90°),且sinθ=,點P到平面α的距離PH=0.4(km).沿山腳原有一段筆直的公路AB可供利用.從點O到山腳修路的造價為a萬元/km,原有公路改建費用為萬元/km.當(dāng)山坡上公路長度為l km(1≤l≤2)時,其造價為(l2+1)a萬元已知OA⊥AB,PB⊥AB,AB=1.5(km),OA=(km).

(1)在AB上求一點D,使沿折線PDAO修建公路的總造價最小;

(2)對于(1)中得到的點D,在DA上求一點E,使沿折線PDEO修建公路的總造價最;

(3)在AB上是否存在兩個不同的點D′,E′,使沿折線.PD′E′O修建公路的總造價小于(2)中得到的最小總造價?證明你的結(jié)論.

a)

第19題圖

(文)如圖b所示,直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,△ABC為等邊三角形,且AA1=AD=DC=2.

(1)求AC1與BC所成角的余弦值;

(2)求二面角C1-BD-C的大。

(3)設(shè)M是BD上的點,當(dāng)DM為何值時,D1M⊥平面A1C1D?并證明你的結(jié)論.

第19題圖

查看答案和解析>>


同步練習(xí)冊答案