題目列表(包括答案和解析)
(本小題滿分14分)已知函數(shù)定義在區(qū)間,對任意,恒有成立,又數(shù)列滿足(I)在(-1,1)內(nèi)求一個實數(shù)t,使得(II)求證:數(shù)列是等比數(shù)列,并求的表達式;(III)設,是否存在,使得對任意,恒成立?若存在,求出m的最小值;若不存在,請說明理由。
(本小題滿分14分)
已知函數(shù)的圖象在上連續(xù)不斷,定義:
,
.
其中,表示函數(shù)在上的最小值,表示函數(shù)在上的最大值.若存在最小正整數(shù),使得對任意的成立,則稱函數(shù)為上的“階收縮函數(shù)”.
(Ⅰ)若,,試寫出,的表達式;
(Ⅱ)已知函數(shù),,試判斷是否為上的“階收縮函數(shù)”,如果是,求出對應的;如果不是,請說明理由;
(Ⅲ)已知,函數(shù)是上的2階收縮函數(shù),求的取值范圍.
(本小題滿分14分)已知函數(shù).
(Ⅰ)若函數(shù)f(x)在其定義域內(nèi)為單調(diào)函數(shù),求a的取值范圍;
(Ⅱ)若函數(shù)f(x)的圖象在x = 1處的切線的斜率為0,且,已
知a1 = 4,求證:an³ 2n + 2;
(Ⅲ)在(Ⅱ)的條件下,試比較與的大小,并說明你的理由.
(本小題滿分14分)
已知函數(shù),當時,取得極小值.
(1)求,的值;
(2)設直線,曲線.若直線與曲線同時滿足下列兩個條件:
①直線與曲線相切且至少有兩個切點;
②對任意都有.則稱直線為曲線的“上夾線”.
試證明:直線是曲線的“上夾線”.
(3)記,設是方程的實數(shù)根,若對于定義域中任意的、,當,且時,問是否存在一個最小的正整數(shù),使得恒成立,若存在請求出的值;若不存在請說明理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com