★若,則a的值為( ) A.0 B.1 C.-1 D. 分析 本題考查當(dāng)x→x0時函數(shù)的極限. 解 ∵存在.而把x=2代入分母時.分母為零. ∴分子.分母應(yīng)有(x-2)這一公因式.化簡以后.再求極限. ∴分子x2+ax-2可分解成(x-2)(x+1). 即x2+ax-2=(x-2)(x+1)=x2-x-2. ∴a=-1. 答案 C 查看更多

 

題目列表(包括答案和解析)

4. m>2或m<-2 解析:因?yàn)閒(x)=在(-1,1)內(nèi)有零點(diǎn),所以f(-1)f(1)<0,即(2+m)(2-m)<0,則m>2或m<-2

隨機(jī)變量的所有等可能取值為1,2…,n,若,則(    )

A. n=3        B.n=4          C. n=5        D.不能確定

5.m=-3,n=2 解析:因?yàn)?img width=127 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/81/253081.gif">的兩零點(diǎn)分別是1與2,所以,即,解得

6.解析:因?yàn)?img width=95 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/86/253086.gif">只有一個零點(diǎn),所以方程只有一個根,因此,所以

查看答案和解析>>

(本題11分)如圖1,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為(1,4),交x軸于A、B,交y軸于D,其中B點(diǎn)的坐標(biāo)為(3,0)

(1)求拋物線的解析式

(2)如圖2,過點(diǎn)A的直線與拋物線交于點(diǎn)E,交y軸于點(diǎn)F,其中E點(diǎn)的橫坐標(biāo)為2,若直線PQ為拋物線的對稱軸,點(diǎn)G為PQ上一動點(diǎn),則軸上是否存在一點(diǎn)H,使D、G、F、H四點(diǎn)圍成的四邊形周長最小.若存在,求出這個最小值及G、H的坐標(biāo);若不存在,請說明理由.

(3)如圖3,拋物線上是否存在一點(diǎn),過點(diǎn)軸的垂線,垂足為,過點(diǎn)作直線,交線段于點(diǎn),連接,使,若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

       圖1                        圖2                          圖3

 

查看答案和解析>>

(本題11分)如圖1,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為(1,4),交x軸于A、B,交y軸于D,其中B點(diǎn)的坐標(biāo)為(3,0)
(1)求拋物線的解析式
(2)如圖2,過點(diǎn)A的直線與拋物線交于點(diǎn)E,交y軸于點(diǎn)F,其中E點(diǎn)的橫坐標(biāo)為2,若直線PQ為拋物線的對稱軸,點(diǎn)G為PQ上一動點(diǎn),則軸上是否存在一點(diǎn)H,使D、G、F、H四點(diǎn)圍成的四邊形周長最小.若存在,求出這個最小值及G、H的坐標(biāo);若不存在,請說明理由.
(3)如圖3,拋物線上是否存在一點(diǎn),過點(diǎn)軸的垂線,垂足為,過點(diǎn)作直線,交線段于點(diǎn),連接,使,若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
      圖1                       圖2                          圖3

查看答案和解析>>

(本題11分)如圖1,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為(1,4),交x軸于A、B,交y軸于D,其中B點(diǎn)的坐標(biāo)為(3,0)
(1)求拋物線的解析式
(2)如圖2,過點(diǎn)A的直線與拋物線交于點(diǎn)E,交y軸于點(diǎn)F,其中E點(diǎn)的橫坐標(biāo)為2,若直線PQ為拋物線的對稱軸,點(diǎn)G為PQ上一動點(diǎn),則軸上是否存在一點(diǎn)H,使D、G、F、H四點(diǎn)圍成的四邊形周長最小.若存在,求出這個最小值及G、H的坐標(biāo);若不存在,請說明理由.
(3)如圖3,拋物線上是否存在一點(diǎn),過點(diǎn)軸的垂線,垂足為,過點(diǎn)作直線,交線段于點(diǎn),連接,使,若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
      圖1                       圖2                          圖3

查看答案和解析>>

(本小題滿分16分)知函數(shù)f(x)=ax3+bx2+cx+d(a、b、c、dR),且函數(shù)f(x)的圖象關(guān)于原點(diǎn)對稱,其圖象x=3處的切線方程為8x-y-18=0.

(1)求f(x)的解析式;

(2)是否存在區(qū)間,使得函數(shù)f(x)的定義域和值域均為?若存在,求出這樣的一個區(qū)間;若不存在,則說明理由;

(3)若數(shù)列{an}滿足:a1≥1,an+1,試比較+++…+與1的大小關(guān)系,并說明理由.

查看答案和解析>>


同步練習(xí)冊答案