題目列表(包括答案和解析)

 0  446819  446827  446833  446837  446843  446845  446849  446855  446857  446863  446869  446873  446875  446879  446885  446887  446893  446897  446899  446903  446905  446909  446911  446913  446914  446915  446917  446918  446919  446921  446923  446927  446929  446933  446935  446939  446945  446947  446953  446957  446959  446963  446969  446975  446977  446983  446987  446989  446995  446999  447005  447013  447348 

22.(本小題滿分14分)

如圖,設(shè)拋物線的焦點(diǎn)為F,動(dòng)點(diǎn)P在直線上運(yùn)動(dòng),過(guò)P作拋物線C的兩條切線PA、PB,且與拋物線C分別相切于A、B兩點(diǎn).

(1)求△APB的重心G的軌跡方程.

(2)證明∠PFA=∠PFB.

[思路點(diǎn)撥]本題涉及解析幾何中直線與拋物線的若干知識(shí).

[正確解答](1)設(shè)切點(diǎn)A、B坐標(biāo)分別為,

∴切線AP的方程為:

  切線BP的方程為:

解得P點(diǎn)的坐標(biāo)為:

所以△APB的重心G的坐標(biāo)為

所以,由點(diǎn)P在直線l上運(yùn)動(dòng),從而得到重心G的軌跡方程為:

  (2)方法1:因?yàn)?sub>

由于P點(diǎn)在拋物線外,則

同理有

∴∠AFP=∠PFB.

方法2:①當(dāng)所以P點(diǎn)坐標(biāo)為,則P點(diǎn)到直線AF的距離為:

所以P點(diǎn)到直線BF的距離為:

所以d1=d2,即得∠AFP=∠PFB.

②當(dāng)時(shí),直線AF的方程:

直線BF的方程:

所以P點(diǎn)到直線AF的距離為:

,同理可得到P點(diǎn)到直線BF的距離,因此由d1=d2,可得到∠AFP=∠PFB.

[解后反思]解析幾何主要的是點(diǎn)和曲線的位置關(guān)系、對(duì)稱性,標(biāo)準(zhǔn)方程當(dāng)中系數(shù)對(duì)位置的影響.圓錐曲線的定義和幾何性質(zhì),解析幾何的解答題往往是高檔題,常常涉及的內(nèi)容是求軌跡方程、直線和圓錐曲線的位置關(guān)系、對(duì)稱、最值、范圍.做這類題目一定要認(rèn)真細(xì)心,提高自己的運(yùn)算能力和思維能力.

試題詳情

21.(本小題滿分12分)

已知數(shù)列

(1)證明

(2)求數(shù)列的通項(xiàng)公式an.

[思路點(diǎn)撥]本題考查數(shù)列的基礎(chǔ)知識(shí),考查運(yùn)算能力和推理能力.第(1)問(wèn)是證明遞推關(guān)系,聯(lián)想到用數(shù)學(xué)歸納法,第(2)問(wèn)是計(jì)算題,也必須通過(guò)遞推關(guān)系進(jìn)行分析求解.

[正確解答](1)方法一 用數(shù)學(xué)歸納法證明:

1°當(dāng)n=1時(shí),

  ∴,命題正確.

2°假設(shè)n=k時(shí)有

  則

 

時(shí)命題正確.

由1°、2°知,對(duì)一切n∈N時(shí)有

方法二:用數(shù)學(xué)歸納法證明:

   1°當(dāng)n=1時(shí),;

   2°假設(shè)n=k時(shí)有成立,

    令,在[0,2]上單調(diào)遞增,所以由假設(shè)

有:

也即當(dāng)n=k+1時(shí)  成立,所以對(duì)一切

  (2)下面來(lái)求數(shù)列的通項(xiàng):所以

,

又bn=-1,所以.

[解后反思]數(shù)列是高考考綱中明文規(guī)定必考內(nèi)容之一,考綱規(guī)定學(xué)生必須理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng).當(dāng)然數(shù)列與不等式的給合往往得高考數(shù)學(xué)的熱點(diǎn)之一,也成為諸多省份的最后壓軸大題,解決此類問(wèn)題,必須有過(guò)硬的數(shù)學(xué)基礎(chǔ)知識(shí)與過(guò)人的數(shù)學(xué)技巧,同時(shí)運(yùn)用數(shù)學(xué)歸納法也是比較好的選擇,不過(guò)在使用數(shù)學(xué)歸納法的過(guò)程中,一定要遵循數(shù)學(xué)歸納法的步驟.

試題詳情

20.(本小題滿分12分)

如圖,在長(zhǎng)方體ABCD-A1B1C1D1,中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動(dòng).

  (1)證明:D1E⊥A1D;

  (2)當(dāng)E為AB的中點(diǎn)時(shí),求點(diǎn)E到面ACD1的距離;

  (3)AE等于何值時(shí),二面角D1-EC-D的大小為.

[思路點(diǎn)撥]本題涉及立體幾何線面關(guān)系的有關(guān)知識(shí),

[正確解答]解法(一)

(1)證明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E

(2)設(shè)點(diǎn)E到面ACD1的距離為h,在△ACD1中,AC=CD1=,AD1=,

(3)過(guò)D作DH⊥CE于H,連D1H、DE,則D1H⊥CE,

  ∴∠DHD1為二面角D1-EC-D的平面角.

設(shè)AE=x,則BE=2-x

解法(二):以D為坐標(biāo)原點(diǎn),直線DA,DC,DD1分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè)AE=x,則A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)

(1)

(2)因?yàn)镋為AB的中點(diǎn),則E(1,1,0),從而

,設(shè)平面ACD1的法向量為,則

也即,得,從而,所以點(diǎn)E到平面AD1C的距離為

(3)設(shè)平面D1EC的法向量

,∴

  令b=1, ∴c=2,a=2-x,

依題意

(不合,舍去), .

∴AE=時(shí),二面角D1-EC-D的大小為.

[解后反思]立體幾何的內(nèi)容就是空間的判斷、推理、證明、角度和距離、面積與體積的計(jì)算,這是立體幾何的重點(diǎn)內(nèi)容,本題實(shí)質(zhì)上求解角度和距離,在求此類問(wèn)題中,盡量要將這些量處于三角形中,最好是直角三角形,這樣計(jì)算起來(lái),比較簡(jiǎn)單,此外用向量也是一種比較好的方法,不過(guò)建系一定要恰當(dāng),這樣坐標(biāo)才比較好寫出來(lái).

試題詳情

19.(本小題滿分12分)

A、B兩位同學(xué)各有五張卡片,現(xiàn)以投擲均勻硬幣的形式進(jìn)行游戲,當(dāng)出現(xiàn)正面朝上時(shí)A贏得B一張卡片,否則B贏得A一張卡片.規(guī)定擲硬幣的次數(shù)達(dá)9次時(shí),或在此前某人已贏得所有卡片時(shí)游戲終止.設(shè)表示游戲終止時(shí)擲硬幣的次數(shù).

(1)求的取值范圍;

(2)求的數(shù)學(xué)期望E.

[思路點(diǎn)撥]本題考查涉及概率等若干知識(shí),理解的含義是解決本題的關(guān)鍵.

[正確解答](1)設(shè)正面出現(xiàn)的次數(shù)為m,反面出現(xiàn)的次數(shù)為n,則,

可得:

(2)

[解后反思]要想做對(duì)此類問(wèn)題,要具備兩個(gè)條件,首先要理解題目所涉及的知識(shí),本題有一定的抽象性,如果你不理解題目,你就無(wú)從下手,第二要記牢這一類題目的做題步驟,做此類型題目,有時(shí)候步驟很重要的,嚴(yán)格按照書中例題的步驟完成是得到正確答案的保證.

試題詳情

18.(本小題滿分12分)

已知向量.

是否存在實(shí)數(shù)若存在,則求出x的值;若不存在,則證明之.

[思路點(diǎn)撥]本題主要考查向量與三角,導(dǎo)數(shù)的綜合題,正確化簡(jiǎn)f(x)是解該題的關(guān)健.

[正確解答]

    

[解后反思]本題是一道簡(jiǎn)單三角函數(shù)題,不過(guò)我們?nèi)匀辉诒绢}的解決過(guò)程中,發(fā)現(xiàn)這樣一個(gè)問(wèn)題,化簡(jiǎn)在解決數(shù)學(xué)過(guò)程中的重要地位,本題只要化簡(jiǎn)到位,那么在解決的過(guò)程會(huì)大大縮短,一切都變的簡(jiǎn)單起來(lái),所以在解三角函數(shù)問(wèn)題或其他的數(shù)學(xué)問(wèn)題,能化簡(jiǎn)的,要盡量先化簡(jiǎn).

試題詳情

17.(本小題滿分12分)

已知函數(shù)(a,b為常數(shù))且方程f(x)-x+12=0有兩個(gè)實(shí)根為x1=3, x2=4.

  (1)求函數(shù)f(x)的解析式;

  (2)設(shè)k>1,解關(guān)于x的不等式;

[思路點(diǎn)撥]本題主要考查求函數(shù)的解析式及含參分式不等式的解法.

[正確解答](1)將

(2)不等式即為

①當(dāng)

②當(dāng)

.

[解后反思]解不等式的過(guò)程實(shí)質(zhì)上就是轉(zhuǎn)化的過(guò)程,分式不等式轉(zhuǎn)化成整式不等式,解分式不等式一般情況下是移項(xiàng),通分,然后轉(zhuǎn)化成整式不等式,對(duì)于高次不等式,借助數(shù)軸法,則簡(jiǎn)單,快捷,另外,

試題詳情

16.以下同個(gè)關(guān)于圓錐曲線的命題中

    ①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),,則動(dòng)點(diǎn)P的軌跡為雙曲線;

    ②設(shè)定圓C上一定點(diǎn)A作圓的動(dòng)點(diǎn)弦AB,O為坐標(biāo)原點(diǎn),若則動(dòng)點(diǎn)P的軌跡為橢圓;

    ③方程的兩根可分別作為橢圓和雙曲線的離心率;

    ④雙曲線有相同的焦點(diǎn).

    其中真命題的序號(hào)為         (寫出所有真命題的序號(hào))

[思路點(diǎn)撥]本題主要考查圓錐曲線的定義和性質(zhì)主要由a,b,c,e的關(guān)系求得

[正確解答]雙曲線的第一定義是:平面上的動(dòng)點(diǎn)P到兩定點(diǎn)是A,B之間的距離的差的絕對(duì)值為常數(shù)2a,且,那么P點(diǎn)的軌跡為雙曲線,故①錯(cuò),

,得P為弦AB的中點(diǎn),故②錯(cuò),

設(shè)的兩根為可知兩根互與為倒數(shù),且均為正,故③對(duì),

的焦點(diǎn)坐標(biāo)(),而的焦點(diǎn)坐標(biāo)(),故④正確.

[解后反思]要牢牢掌握橢圓,雙曲線的第一定義,同時(shí)還要掌握?qǐng)A錐曲線的統(tǒng)一定義,弄清圓錐曲線中a,b,c,e的相互關(guān)系.

試題詳情

15.如圖,在直三棱柱ABC-A1B1C1中,

AB=BC=,BB1=2,,

E、F分別為AA1、C1B1的中點(diǎn),沿棱柱的表面從E

到F兩點(diǎn)的最短路徑的長(zhǎng)度為        .

[思路點(diǎn)撥]本題主要考查空間距離轉(zhuǎn)化為平面距離.

[正確解答]分別延將E、F展開(kāi)到同一平面內(nèi),則易得:,,或

比較可得,最小值為.

[解后反思]將平面圖形空間化也是立體幾何的另一種問(wèn)題形式,在做立體幾何中,許多問(wèn)題都是空間圖形進(jìn)行平面化,努力將一個(gè)個(gè)空間圖形,通過(guò)所學(xué)的幾何知識(shí),轉(zhuǎn)化成平面圖形,最后使用平面幾何的若干知識(shí)解決,而本題卻反其道而行之,所以在做法上就不能和上述的方法相同,但在本質(zhì)上有許多相通之處,在這類題目中,盡量找出兩者圖形過(guò)程中的聯(lián)系之處,哪些量變啦,哪些量沒(méi)有變,然后解決起來(lái),就會(huì)順手多啦.

試題詳情

14.設(shè)實(shí)數(shù)x, y滿足         .

[思路點(diǎn)撥]本題主要考查線性規(guī)劃問(wèn)題,由線性約束條件畫出可行域,然后求出目標(biāo)函數(shù)的最值.

[正確解答]表示兩點(diǎn)(0,0),A(x,y)的斜率

[解后反思]解題的關(guān)鍵是理解目標(biāo)函數(shù)的幾何意義,類似的你知道的幾何意義嗎?

試題詳情

13.若函數(shù)是奇函數(shù),則a=         .

[思路點(diǎn)撥]本題主要考查函數(shù)的奇偶性,由函數(shù)的奇偶性的定義可求得.

[正確解答]

解法1:由題意可知,,即,

因此,.

解法2:函數(shù)的定義域?yàn)镽,又f(x)為奇函數(shù),故其圖象必過(guò)原點(diǎn)即f(0)=0,所以,得推出答案

[解后反思]對(duì)數(shù)學(xué)概念及定理公式的深刻理解是解數(shù)學(xué)問(wèn)題的關(guān)健,討論函數(shù)的奇偶性,其前提條件是函數(shù)的定義域必須關(guān)于原點(diǎn)對(duì)稱.

若函數(shù)f(x)為奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

若函數(shù)f(x)為偶函數(shù)的圖象關(guān)于y軸對(duì)稱.

試題詳情


同步練習(xí)冊(cè)答案