當(dāng)在上變化時.的變化情況如下表 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對任意的成立,求實數(shù)的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域為

,得

當(dāng)x變化時,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當(dāng)時,取,有,故時不合題意.當(dāng)時,令,即

,得

①當(dāng)時,,上恒成立。因此上單調(diào)遞減.從而對于任意的,總有,即上恒成立,故符合題意.

②當(dāng)時,,對于,,故上單調(diào)遞增.因此當(dāng)取時,,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當(dāng)n=1時,不等式左邊==右邊,所以不等式成立.

當(dāng)時,

                      

                      

在(2)中取,得

從而

所以有

     

     

     

     

      

綜上,

 

查看答案和解析>>

已知函數(shù)其中為自然對數(shù)的底數(shù), .(Ⅰ)設(shè),求函數(shù)的最值;(Ⅱ)若對于任意的,都有成立,求的取值范圍.

【解析】第一問中,當(dāng)時,,.結(jié)合表格和導(dǎo)數(shù)的知識判定單調(diào)性和極值,進(jìn)而得到最值。

第二問中,∵,,      

∴原不等式等價于:,

, 亦即

分離參數(shù)的思想求解參數(shù)的范圍

解:(Ⅰ)當(dāng)時,,

當(dāng)上變化時,的變化情況如下表:

 

 

1/e

時,,

(Ⅱ)∵,,      

∴原不等式等價于:,

, 亦即

∴對于任意的,原不等式恒成立,等價于恒成立,

∵對于任意的時, (當(dāng)且僅當(dāng)時取等號).

∴只需,即,解之得.

因此,的取值范圍是

 

查看答案和解析>>

已知函數(shù)的圖象過坐標(biāo)原點O,且在點處的切線的斜率是.

(Ⅰ)求實數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當(dāng)時,,則。

依題意得:,即    解得

第二問當(dāng)時,,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

(Ⅰ)當(dāng)時,,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時,,令

當(dāng)變化時,的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,!上的最大值為2.

②當(dāng)時, .當(dāng)時, ,最大值為0;

當(dāng)時, 上單調(diào)遞增!最大值為。

綜上,當(dāng)時,即時,在區(qū)間上的最大值為2;

當(dāng)時,即時,在區(qū)間上的最大值為

(Ⅲ)假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>


同步練習(xí)冊答案