③是它圖象的一個對稱中心 ④當(dāng)時.它一定取最大值 其中描述正確的是 A.①② B.①③ C.②④ D.②③ 查看更多

 

題目列表(包括答案和解析)

已知是定義在R上的奇函數(shù),且為偶函數(shù),對于函數(shù)有下列幾種描述

       ①是周期函數(shù)      ②是它的一條對稱軸

       ③是它圖象的一個對稱中心  ④當(dāng)時,它一定取最大值

    其中描述正確的是                            (    )

       A.①② B.①③ C.②④ D.②③

查看答案和解析>>

已知是定義在R上的奇函數(shù),且為偶函數(shù),對于函數(shù)有下列幾種描述
是周期函數(shù)                          ②是它的一條對稱軸
是它圖象的一個對稱中心        ④當(dāng)時,它一定取最大值
其中描述正確的是                                                                                          (   )
A.①②B.①③C.②④D.②③

查看答案和解析>>

已知定義在R上的奇函數(shù)為偶函數(shù),對于函數(shù)有下列幾種描述,

(1)是周期函數(shù)                    (2)是它的一條對稱軸

2,4,6

 
(3)是它圖象的一個對稱中心          (4)當(dāng)時,它一定取最大值

其中描述正確的是                                                                                                 

A.(1)(2)        B.(1)(3)      C.(2)(4)                    D.(2)(3)

查看答案和解析>>

已知定義在R上的奇函數(shù)為偶函數(shù),對于函數(shù)y=f(x)有下列幾種描述,

(1)y=f(x)是周期函數(shù)

(2)x=π是它的一條對稱軸

(3)(-π,0)是它圖象的一個對稱中心

(4)當(dāng)時,它一定取最大值

其中描述正確的是

[  ]

A.(1)(2)

B.(1)(3)

C.(2)(4)

D.(2)(3)

查看答案和解析>>

已知定義在R上的奇函數(shù)y=f(x)滿足為偶函數(shù),對于函數(shù)y=f(x)有下列幾種描述,其中描述正確的是

(1)y=f(x)是周期函數(shù)

(2)x=π是它的一條對稱軸

(3)(-π,0)是它圖象的一個對稱中心

(4)當(dāng)時,它一定取最大值

[  ]

A.(2)(4)

B.(2)(3)

C.(1)(2)

D.(1)(3)

查看答案和解析>>

一、選擇題

1.C 解析:關(guān)于y軸的對稱圖形,可得

圖象,再向右平移一個單位,即可得的圖象,即的圖

2,4,6

2.A 解析:由題可知,故選A.

3.D 解析:上恒成立,即恒成立,故選D.

4.C  解析:令公比為q,由a1=3,前三項的和為21可得q2+q-6=0,各項都為正數(shù),所以q=2,所以,故選C.

5.C  解析:由圖可知,陰影部分面積.

6.A  解析:故在[-2,2]上最大值為,所以最小值為,故選A.

7.A  解析:y值對應(yīng)1,x可對應(yīng)±1,y值對應(yīng)4,x可對應(yīng)±2,故定義域共有{1,2},{1,-2},{-1,2},{-1,-2},{1,-1,2},{1,-1,-2},{1,2,-2},{-1,2,-2},{-,1,-2,2}共9種情況.

8.B  可采取特例法,例皆為滿足條件的函數(shù),一一驗證可知選B.

二、填空題:

9.答案:6   解析:∵     ∴a7+a­11=6.

10.答案a=3、2π  解析:的上半圓

面積,故為2π.

11.答案:20  解析:由數(shù)列相關(guān)知識可知

12.答案:

解析:由題可知 ,故定義域為

13.答案:2   解析:由a,b,c成等差數(shù)列知①,由②,

由c>b>a知角B為銳角,③,聯(lián)立①②③得b=2.

故當(dāng)時,

三、解答題:

15.解:(Ⅰ)由題可知函數(shù)定義域關(guān)于原點對稱.

    當(dāng)

    則,

    ∴

    當(dāng)

    則,

   ∴

    綜上所述,對于,∴函數(shù)是偶函數(shù).

(Ⅱ)當(dāng)x>0時,

設(shè)

當(dāng)

∴函數(shù)上是減函數(shù),函數(shù)上是增函數(shù).

(另證:當(dāng);

∴函數(shù)上是減函數(shù),在上是增函數(shù).

16.解:(Ⅰ)∵函數(shù)圖象過點A(0,1)、B(,1)

  ∴b=c

∵當(dāng)

  ③

聯(lián)立②③得        

(Ⅱ)①由圖象上所有點向左平移個單位得到的圖象

②由的圖象上所有點的縱坐標變?yōu)樵瓉淼?sub>倍,得到

的圖象

③由的圖象上所有點向下平移一個單位,得到

的圖象

17.(1)證明:由題設(shè),得

又a1-1=1,

所以數(shù)列{an-n}是首項為1,且公比為4的等比數(shù)列.

(Ⅱ)解:由(Ⅰ)可知,于是數(shù)列{ an }的通項公式為

所以數(shù)列{an}的前n項和

18.分析:求停車場面積,需建立長方形的面積函數(shù). 這里自變量的選取十分關(guān)鍵,通常有代數(shù)和三角兩種設(shè)未知數(shù)的方法,如果設(shè)長方形PQCR的一邊長為x(不妨設(shè)PR=x),則另一邊長,

這樣SPQCR=PQ?PR=x?(100-),但該函數(shù)的最值不易求得,如果將∠BAP作為自變量,用它可表示PQ、PR,再建立面積函數(shù),則問題就容易得多,于是可求解如下;

解:延長RP交AB于M,設(shè)∠PAB=,則

AM=90

<center id="wuwsg"></center>
    <delect id="wuwsg"><pre id="wuwsg"></pre></delect>

           

    設(shè),   ∵

    ∴當(dāng),SPQCR有最大值

    答:長方形停車場PQCR面積的最大值為平方米.

    19.解:(Ⅰ)【方法一】由,

    依題設(shè)可知,△=(b+1)24c=0.

    .

    【方法二】依題設(shè)可知

    為切點橫坐標,

    于是,化簡得

    同法一得

    (Ⅱ)由

    可得

    依題設(shè)欲使函數(shù)內(nèi)有極值點,

    則須滿足

    亦即

    故存在常數(shù),使得函數(shù)內(nèi)有極值點.

    (注:若,則應(yīng)扣1分. )

    20.解:(Ⅰ)設(shè)函數(shù)

       (Ⅱ)由(Ⅰ)可知

    可知使恒成立的常數(shù)k=8.

    (Ⅲ)由(Ⅱ)知 

    可知數(shù)列為首項,8為公比的等比數(shù)列

    即以為首項,8為公比的等比數(shù)列. 則 

    .


    同步練習(xí)冊答案