題目列表(包括答案和解析)
若、是兩條不同的直線,是三個不同的平面,則下列命題中為真命題的是學科網(wǎng)
A.若則 B.若則 學科網(wǎng)
C.若則 D.若則學科網(wǎng)
A.若則 | B.若則 |
C.若則 | D.若則 |
設(shè)是兩條不同的直線,是三個不同的平面,給出下列四個命題:
①若;②;
③;④,其中正確命題的序號是( )
A、①和② B、②和③ C、③和④ D、①和④
設(shè)m、n是兩條不同的直線,是三個不同的
平面,給出下列四個命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號是( ) .
(A)①和② (B)②和③ (C)③和④ (D)①和④
設(shè)m、n是兩條不同的直線,是三個不同的
平面,給出下列四個命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號是( ) .
(A)①和② (B)②和③ (C)③和④ (D)①和④
一、選擇題:本題考查基本知識和基本運算,每小題5分。共60分。
CBDDD ABDAB DA
二、填空題:本題考查基本知識和基本運算,每小題4分,共16分。
(13) (14) ―192 (15) (16) ①③④
三、解答題:本大題共6小題,共74分。
(17)(本小題滿分12分)
解:(Ⅰ)…………………………………………1分
依題意 …………………………………………2分
又
…………………………………………4分
…………………………………………5分
令 x=0,得 ………………………7分
所以, 函數(shù)的解析式為 ……………………………8分
(還有其它的正確形式,如:等)
(Ⅱ)當,時單增 ……10分
即, …………………………………………11分
∴的增區(qū)間是 ………………………………………12分
(注意其它正確形式,如:區(qū)間左右兩端取開、閉,等)
(18)(本小題滿分12分)
解:(Ⅰ)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,
由題設(shè)知,∴,∴
則,∴………………………………3分
∴
又∵,
∴,
又,∴,
∴,又
∴,
∴………………………………………………………6分
(Ⅱ) ,……………………………………7分
∴
①
②……………………………9分
①一②得
∴………………………………………………………12分
(19)(本小題滿分12分)
解:(1)設(shè),∵幾何體的體積為,
∴, ………………………3分
即,
即,解得.
∴的長為4. ……………………………6分
(2)在線段上存在點,使直線與垂直.
以下給出兩種證明方法:
方法1:過點作的垂線交于點,過點作
交于點.
∵,,,
∴平面.
∵平面,∴.
∵,∴平面.
∵平面,∴.
在矩形中,∵∽,
∴,即,∴.
∵∽,∴,即,∴.………………………9分
在中,∵,∴.
由余弦定理,得
.………………………11分
∴在線段上存在點,使直線與垂直,且線段的長為. ………………………12分
方法2:以點為坐標原點,分別以,,所在的直線為軸,軸,軸建立如圖的空間直角坐標系,由已知條件與(1)可知,,,, ………………………7分
假設(shè)在線段上存在點≤≤2,,0≤≤
由∽,得,
∴.
∴.
∴,.
∵,∴,
即,∴. ……………………9分
此時點的坐標為,在線段上.
∵,∴.……………11分
∴在線段上存在點,使直線與垂直,且線段的長為. ……………………12分
(20)(本小題滿分12分)
解:(Ⅰ)的所有可能值為0,1,2,3,4.…………………………1分
,
,
,
. ……………………4分
其分布列為:
0
1
2
3
4
…………………………6分
(Ⅱ),
. …………………………8分
由題意可知
, …………………………10分
元. …………………………12分
(21)(本小題滿分12分)
解:(Ⅰ)因為,所以有
所以為直角三角形;…………………………2分
則有
所以,…………………………3分
又,………………………4分
在中有
即,解得
所求橢圓方程為…………………………6分
(Ⅱ)
從而將求的最大值轉(zhuǎn)化為求的最大值…………………………8分
是橢圓上的任一點,設(shè),則有即
又,所以………………………10分
而,所以當時,取最大值
故的最大值為…………………………12分
(22)(本小題滿分14分)
(1)解法1:∵,其定義域為,
∴. ……………………1分
∵是函數(shù)的極值點,∴,即.
∵,∴.
經(jīng)檢驗當時,是函數(shù)的極值點,
∴. ……………………5分
解法2:∵,其定義域為,
∴. ……………………1分
令,即,整理,得.
∵,
∴的兩個實根(舍去),,……………………3分
當變化時,,的變化情況如下表:
―
0
+
極小值
依題意,,即,……………………5分
∵,∴.
(2)解:對任意的都有≥成立等價于對任意的
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com