題目列表(包括答案和解析)
在等差數(shù)列中,若,則的值為( )
A. 6 B. 8 C. 10 D. 16
第Ⅱ卷 (非選擇題 共100分)
下列四個函數(shù)圖象,只有一個是符合(其中,,為正實(shí)數(shù),為非零實(shí)數(shù))的圖象,則根據(jù)你所判斷的圖象,之間一定成立的關(guān)系是( )
A. B. C. D.
第Ⅱ卷
已知均為正數(shù),,則的最小值是 ( )
A. B. C. D.
第Ⅱ卷 (非選擇題 共90分)
二、填空題:本大題共4小題,每小題4分,共16分,將答案填在題中的橫線上。
給出定義:若(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m在此基礎(chǔ)上給出下列關(guān)于函數(shù)的四個命題:
① ②
③ ④的定義域?yàn)镽,值域是
則其中真命題的序號是 ( )
A.①② B.①③ C.②④ D.③④
第Ⅱ卷
同時具有性質(zhì)“①最小正周期是,②圖像關(guān)于直線對稱;③在上是增函數(shù)”的一個函數(shù)是( )
A. B.
C. D.
第Ⅱ卷(共110分)
一、選擇題:本題考查基本知識和基本運(yùn)算,每小題5分。共60分。
CBDDD ABDAB DA
二、填空題:本題考查基本知識和基本運(yùn)算,每小題4分,共16分。
(13) (14) ―192 (15) (16) ①③④
三、解答題:本大題共6小題,共74分。
(17)(本小題滿分12分)
解:(Ⅰ)…………………………………………1分
依題意 …………………………………………2分
又
…………………………………………4分
…………………………………………5分
令 x=0,得 ………………………7分
所以, 函數(shù)的解析式為 ……………………………8分
(還有其它的正確形式,如:等)
(Ⅱ)當(dāng),時單增 ……10分
即, …………………………………………11分
∴的增區(qū)間是 ………………………………………12分
(注意其它正確形式,如:區(qū)間左右兩端取開、閉,等)
(18)(本小題滿分12分)
解:(Ⅰ)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,
由題設(shè)知,∴,∴
則,∴………………………………3分
∴
又∵,
∴,
又,∴,
∴,又
∴,
∴………………………………………………………6分
(Ⅱ) ,……………………………………7分
∴
①
②……………………………9分
①一②得
∴………………………………………………………12分
(19)(本小題滿分12分)
解:(1)設(shè),∵幾何體的體積為,
∴, ………………………3分
即,
即,解得.
∴的長為4. ……………………………6分
(2)在線段上存在點(diǎn),使直線與垂直.
以下給出兩種證明方法:
方法1:過點(diǎn)作的垂線交于點(diǎn),過點(diǎn)作
交于點(diǎn).
∵,,,
∴平面.
∵平面,∴.
∵,∴平面.
∵平面,∴.
在矩形中,∵∽,
∴,即,∴.
∵∽,∴,即,∴.………………………9分
在中,∵,∴.
由余弦定理,得
.………………………11分
∴在線段上存在點(diǎn),使直線與垂直,且線段的長為. ………………………12分
方法2:以點(diǎn)為坐標(biāo)原點(diǎn),分別以,,所在的直線為軸,軸,軸建立如圖的空間直角坐標(biāo)系,由已知條件與(1)可知,,,, ………………………7分
假設(shè)在線段上存在點(diǎn)≤≤2,,0≤≤
由∽,得,
∴.
∴.
∴,.
∵,∴,
即,∴. ……………………9分
此時點(diǎn)的坐標(biāo)為,在線段上.
∵,∴.……………11分
∴在線段上存在點(diǎn),使直線與垂直,且線段的長為. ……………………12分
(20)(本小題滿分12分)
解:(Ⅰ)的所有可能值為0,1,2,3,4.…………………………1分
,
,
,
. ……………………4分
其分布列為:
0
1
2
3
4
…………………………6分
(Ⅱ),
. …………………………8分
由題意可知
, …………………………10分
元. …………………………12分
(21)(本小題滿分12分)
解:(Ⅰ)因?yàn)?sub>,所以有
所以為直角三角形;…………………………2分
則有
所以,…………………………3分
又,………………………4分
在中有
即,解得
所求橢圓方程為…………………………6分
(Ⅱ)
從而將求的最大值轉(zhuǎn)化為求的最大值…………………………8分
是橢圓上的任一點(diǎn),設(shè),則有即
又,所以………………………10分
而,所以當(dāng)時,取最大值
故的最大值為…………………………12分
(22)(本小題滿分14分)
(1)解法1:∵,其定義域?yàn)?sub>,
∴. ……………………1分
∵是函數(shù)的極值點(diǎn),∴,即.
∵,∴.
經(jīng)檢驗(yàn)當(dāng)時,是函數(shù)的極值點(diǎn),
∴. ……………………5分
解法2:∵,其定義域?yàn)?sub>,
∴. ……………………1分
令,即,整理,得.
∵,
∴的兩個實(shí)根(舍去),,……………………3分
當(dāng)變化時,,的變化情況如下表:
―
0
+
極小值
依題意,,即,……………………5分
∵,∴.
(2)解:對任意的都有≥成立等價于對任意的
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com