[解] 本題的隱含條件是式子的值為定值.即與α無(wú)關(guān).故可令α=0°.計(jì)算得上式值為. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對(duì)一切恒成立,當(dāng)且僅當(dāng).       、

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),

從而,

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>

在△ABC中,為三個(gè)內(nèi)角為三條邊,

(I)判斷△ABC的形狀;

(II)若,求的取值范圍.

【解析】本題主要考查正余弦定理及向量運(yùn)算

第一問(wèn)利用正弦定理可知,邊化為角得到

所以得到B=2C,然后利用內(nèi)角和定理得到三角形的形狀。

第二問(wèn)中,

得到。

(1)解:由及正弦定理有:

∴B=2C,或B+2C,若B=2C,且,∴,;∴B+2C,則A=C,∴是等腰三角形。

(2)

 

查看答案和解析>>

過(guò)拋物線的對(duì)稱軸上的定點(diǎn),作直線與拋物線相交于兩點(diǎn).

(I)試證明兩點(diǎn)的縱坐標(biāo)之積為定值;

(II)若點(diǎn)是定直線上的任一點(diǎn),試探索三條直線的斜率之間的關(guān)系,并給出證明.

【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的能力.

(1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達(dá)定理得 

 (2)中:因?yàn)槿龡l直線AN,MN,BN的斜率成等差數(shù)列,下證之

設(shè)點(diǎn)N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=

  

KAN+KBN=+

本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的能力.

 

查看答案和解析>>

(本題滿分12分)

某簡(jiǎn)諧運(yùn)動(dòng)的圖像對(duì)應(yīng)的函數(shù)解析式為:.

(1)指出此簡(jiǎn)諧運(yùn)動(dòng)的周期、振幅、頻率、相位和初相;

(2)利用“五點(diǎn)法”作出函數(shù)在一個(gè)周期(閉區(qū)間)上的簡(jiǎn)圖;

(3)說(shuō)明它是由函數(shù)y=sinx的圖像經(jīng)過(guò)哪些變換而得到的。

【解】:(1)周期:         ;  振幅:         ;    

頻率:         ;   相位:         ;初相:         ;

    

0

  

 (2)

(3)① 先將函數(shù)的圖像                                      得到函數(shù)

的圖像;② 再將函數(shù)的圖像                              得到

函數(shù)的圖像;③ 最后再將函數(shù)的圖像              

                      得到函數(shù)的圖像。

查看答案和解析>>

如圖6,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.

(Ⅰ)證明:BD⊥PC;

(Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.

【解析】(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912413079631221/SYS201207091242012651351203_ST.files/image002.png">

是平面PAC內(nèi)的兩條相較直線,所以BD平面PAC,

平面PAC,所以.

(Ⅱ)設(shè)AC和BD相交于點(diǎn)O,連接PO,由(Ⅰ)知,BD平面PAC,

所以是直線PD和平面PAC所成的角,從而.

由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因?yàn)樗倪呅蜛BCD為等腰梯形,,所以均為等腰直角三角形,從而梯形ABCD的高為于是梯形ABCD面積

在等腰三角形AOD中,

所以

故四棱錐的體積為.

【點(diǎn)評(píng)】本題考查空間直線垂直關(guān)系的證明,考查空間角的應(yīng)用,及幾何體體積計(jì)算.第一問(wèn)只要證明BD平面PAC即可,第二問(wèn)由(Ⅰ)知,BD平面PAC,所以是直線PD和平面PAC所成的角,然后算出梯形的面積和棱錐的高,由算得體積

 

查看答案和解析>>


同步練習(xí)冊(cè)答案