[解析]與軸正半軸的夾角的取值范圍應(yīng)在向量 查看更多

 

題目列表(包括答案和解析)

如圖,已知點(diǎn),圓是以為直徑的圓,直線,(為參數(shù)).

(1)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,求圓的極坐標(biāo)方程;

(2)過原點(diǎn)作直線的垂線,垂足為,若動(dòng)點(diǎn)滿足,當(dāng)變化時(shí),求點(diǎn)軌跡的參數(shù)方程,并指出它是什么曲線.

【解析】(1)圓C的普通方程為,    (2’)

極坐標(biāo)方程為。        (4’)

(2)直線l的普通方程為,        (5’)

點(diǎn)                      (7’)

           (9’)

點(diǎn)M軌跡的參數(shù)方程為,圖形為圓

 

查看答案和解析>>

已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存過點(diǎn)(2,1)的直線與橢圓相交于不同的兩點(diǎn),滿足?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

【解析】第一問利用設(shè)橢圓的方程為,由題意得

解得

第二問若存在直線滿足條件的方程為,代入橢圓的方程得

因?yàn)橹本與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為

所以

所以.解得。

解:⑴設(shè)橢圓的方程為,由題意得

解得,故橢圓的方程為.……………………4分

⑵若存在直線滿足條件的方程為,代入橢圓的方程得

因?yàn)橹本與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為

所以

所以

,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912284792138316/SYS201207091229220620471975_ST.files/image009.png">,即

所以

所以,解得

因?yàn)锳,B為不同的兩點(diǎn),所以k=1/2.

于是存在直線L1滿足條件,其方程為y=1/2x

 

查看答案和解析>>

在復(fù)平面內(nèi), 是原點(diǎn),向量對(duì)應(yīng)的復(fù)數(shù)是,=2+i。

(Ⅰ)如果點(diǎn)A關(guān)于實(shí)軸的對(duì)稱點(diǎn)為點(diǎn)B,求向量對(duì)應(yīng)的復(fù)數(shù);

(Ⅱ)復(fù)數(shù),對(duì)應(yīng)的點(diǎn)C,D。試判斷A、B、C、D四點(diǎn)是否在同一個(gè)圓上?并證明你的結(jié)論。

【解析】第一問中利用復(fù)數(shù)的概念可知得到由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

第二問中,由題意得,=(2,1)  ∴

同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,

∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上

(Ⅰ)由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

     ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

(Ⅱ)A、B、C、D四點(diǎn)在同一個(gè)圓上。                              2分

證明:由題意得,=(2,1)  ∴

  同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,

∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上

 

查看答案和解析>>

本題設(shè)有(1)(2)(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分。如果多做,則按所做的前兩題記分。作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中。
(1)(本小題滿分7分)選修4-2:矩陣與變換
已知矩陣M=,N=,且MN=
(Ⅰ)求實(shí)數(shù)a,b,c,d的值;(Ⅱ)求直線y=3x在矩陣M所對(duì)應(yīng)的線性變換作用下的像的方程。
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,直線L的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為=2sin。
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線L交于點(diǎn)A,B。若點(diǎn)P的坐標(biāo)為(3,),求∣PA∣+∣PB∣。
(3)(本小題滿分7分)選修4-5:不等式選講
已知函數(shù)f(x)= ∣x-a∣.
(Ⅰ)若不等式f(x) 3的解集為,求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

 在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,分別為曲線軸,軸的交點(diǎn)。

  (1)寫出曲線的直角坐標(biāo)方程,并求、的極坐標(biāo);

  (2)設(shè)中點(diǎn)為,求直線的極坐標(biāo)方程。

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>


同步練習(xí)冊(cè)答案