(2)若.①試確定點(diǎn)F的坐標(biāo),②設(shè)P是點(diǎn)C的軌跡上的動(dòng)點(diǎn).猜想△PBF的周長(zhǎng)最大時(shí)點(diǎn)P的位置.并證明你的猜想. 查看更多

 

題目列表(包括答案和解析)

設(shè)點(diǎn)F是拋物L(fēng):y2=2px(p>0)的焦點(diǎn),P1,P2,…,Pn是拋物線L上的n個(gè)不同的點(diǎn)n(n≥3,n∈N*).
(1)當(dāng)p=2時(shí),試寫(xiě)出拋物線L上三點(diǎn)P1、P2、P3的坐標(biāo),時(shí)期滿足數(shù)學(xué)公式
(2)當(dāng)n≥3時(shí),若數(shù)學(xué)公式,求證:數(shù)學(xué)公式;
(3)當(dāng)n>3時(shí),某同學(xué)對(duì)(2)的逆命題,即:“若數(shù)學(xué)公式,則數(shù)學(xué)公式”開(kāi)展了研究并發(fā)現(xiàn)其為假命題.
請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開(kāi)展研究:
1.試構(gòu)造一個(gè)說(shuō)明該命題確實(shí)是假命題的反例;
2.對(duì)任意給定的大于3的正整數(shù)n,試構(gòu)造該假命題反例的一般形式,并說(shuō)明你的理由:
3.如果補(bǔ)充一個(gè)條件后能使該命題為真,請(qǐng)寫(xiě)出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說(shuō)明加上該條件后,能使該逆命題為真命題的理由.

查看答案和解析>>

設(shè)點(diǎn)F是拋物L(fēng):y2=2px(p>0)的焦點(diǎn),P1,P2,…,Pn是拋物線L上的n個(gè)不同的點(diǎn)n(n≥3,n∈N*).
(1)當(dāng)p=2時(shí),試寫(xiě)出拋物線L上三點(diǎn)P1、P2、P3的坐標(biāo),時(shí)期滿足
(2)當(dāng)n≥3時(shí),若,求證:;
(3)當(dāng)n>3時(shí),某同學(xué)對(duì)(2)的逆命題,即:“若,則”開(kāi)展了研究并發(fā)現(xiàn)其為假命題.
請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開(kāi)展研究:
1.試構(gòu)造一個(gè)說(shuō)明該命題確實(shí)是假命題的反例;
2.對(duì)任意給定的大于3的正整數(shù)n,試構(gòu)造該假命題反例的一般形式,并說(shuō)明你的理由:
3.如果補(bǔ)充一個(gè)條件后能使該命題為真,請(qǐng)寫(xiě)出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說(shuō)明加上該條件后,能使該逆命題為真命題的理由.

查看答案和解析>>

已知點(diǎn)E,F(xiàn)的坐標(biāo)分別是(-2,0)、(2,0),直線EP,F(xiàn)P相交于點(diǎn)P,且它們的斜率之積為
(1)求證:點(diǎn)P的軌跡在橢圓上;
(2)設(shè)過(guò)原點(diǎn)O的直線AB交(1)題中的橢圓C于點(diǎn)A、B,定點(diǎn)M的坐標(biāo)為,試求△MAB面積的最大值,并求此時(shí)直線AB的斜率kAB
(3)某同學(xué)由(2)題結(jié)論為特例作推廣,得到如下猜想:
設(shè)點(diǎn)M(a,b)(ab≠0)為橢圓內(nèi)一點(diǎn),過(guò)橢圓C中心的直線AB與橢圓分別交于A、B兩點(diǎn).則當(dāng)且僅當(dāng)kOM=-kAB時(shí),△MAB的面積取得最大值.
問(wèn):此猜想是否正確?若正確,試證明之;若不正確,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(2012•普陀區(qū)一模)設(shè)點(diǎn)F是拋物L(fēng):y2=2px(p>0)的焦點(diǎn),P1,P2,…,Pn是拋物線L上的n個(gè)不同的點(diǎn)n(n≥3,n∈N*).
(1)當(dāng)p=2時(shí),試寫(xiě)出拋物線L上三點(diǎn)P1、P2、P3的坐標(biāo),時(shí)期滿足|
FP1
|+|
FP2
|+|
FP3
|=6

(2)當(dāng)n≥3時(shí),若
FP1
+
FP2
+…+
FPn
=
0
,求證:|
FP1
|+|
FP2
|+…+|
FPn
|=np
;
(3)當(dāng)n>3時(shí),某同學(xué)對(duì)(2)的逆命題,即:“若|
FP1
|+| 
FP2
|+…+|  
FPN
|=np
,則
FP1
+
FP2
+…+
FPN
=
0
”開(kāi)展了研究并發(fā)現(xiàn)其為假命題.
請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開(kāi)展研究:
1.試構(gòu)造一個(gè)說(shuō)明該命題確實(shí)是假命題的反例;
2.對(duì)任意給定的大于3的正整數(shù)n,試構(gòu)造該假命題反例的一般形式,并說(shuō)明你的理由:
3.如果補(bǔ)充一個(gè)條件后能使該命題為真,請(qǐng)寫(xiě)出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說(shuō)明加上該條件后,能使該逆命題為真命題的理由.

查看答案和解析>>

(2008•普陀區(qū)二模)已知點(diǎn)E,F(xiàn)的坐標(biāo)分別是(-2,0)、(2,0),直線EP,F(xiàn)P相交于點(diǎn)P,且它們的斜率之積為-
1
4

(1)求證:點(diǎn)P的軌跡在橢圓C:
x2
4
+y2=1
上;
(2)設(shè)過(guò)原點(diǎn)O的直線AB交(1)題中的橢圓C于點(diǎn)A、B,定點(diǎn)M的坐標(biāo)為(1,
1
2
)
,試求△MAB面積的最大值,并求此時(shí)直線AB的斜率kAB;
(3)某同學(xué)由(2)題結(jié)論為特例作推廣,得到如下猜想:
設(shè)點(diǎn)M(a,b)(ab≠0)為橢圓C:
x2
4
+y2=1
內(nèi)一點(diǎn),過(guò)橢圓C中心的直線AB與橢圓分別交于A、B兩點(diǎn).則當(dāng)且僅當(dāng)kOM=-kAB時(shí),△MAB的面積取得最大值.
問(wèn):此猜想是否正確?若正確,試證明之;若不正確,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案