14.人造地球衛(wèi)星繞地球旋轉(zhuǎn)時(shí).既具有動(dòng)能又具有引力勢能(引力勢能實(shí)際上是衛(wèi)星與地球共有的.簡略地說此勢能是人造衛(wèi)星所具有的).設(shè)地球的質(zhì)量為M.以衛(wèi)星離地?zé)o限遠(yuǎn)處時(shí)的引力勢能為零.則質(zhì)量為m的人造衛(wèi)星在距離地心為r處時(shí)的引力勢能為 (1)試證明:在大氣層外任一軌道上繞地球做勻速圓周運(yùn)動(dòng)的人造衛(wèi)星所具有的機(jī)械能的絕對值恰好等于其動(dòng)能. (2)當(dāng)物體在地球表面的速度等于或大于某一速度時(shí).物體就可以掙脫地球引力的束縛.成為繞太陽運(yùn)動(dòng)的人造衛(wèi)星.這個(gè)速度叫做第二宇宙速度.用R表示地球的半徑.M表示地球的質(zhì)量.G表示萬有引力常量.試寫出第二宇宙速度的表達(dá)式. 查看更多

 

題目列表(包括答案和解析)

人造地球衛(wèi)星繞地球旋轉(zhuǎn)時(shí),既具有動(dòng)能又具有引力勢能(引力勢能實(shí)際上是衛(wèi)星與地球共有的,簡略地說此勢能是人造衛(wèi)星所具有的).設(shè)地球的質(zhì)量為M,以衛(wèi)星離地還需無限遠(yuǎn)處時(shí)的引力勢能為零,則質(zhì)量為m的人造衛(wèi)星在距離地心為r處時(shí)的引力勢能為Ep=-
GMmr
(G為萬有引力常量).
(1)試證明:在大氣層外任一軌道上繞地球做勻速圓周運(yùn)動(dòng)的人造衛(wèi)星所具有的機(jī)械能的絕對值恰好等于其動(dòng)能.
(2)當(dāng)物體在地球表面的速度等于或大于某一速度時(shí),物體就可以掙脫地球引力的束縛,成為繞太陽運(yùn)動(dòng)的人造衛(wèi)星,這個(gè)速度叫做第二宇宙速度.用R表示地球的半徑,M表示地球的質(zhì)量,G表示萬有引力常量.試寫出第二宇宙速度的表達(dá)式.

查看答案和解析>>

人造地球衛(wèi)星繞地球旋轉(zhuǎn)時(shí),既具有動(dòng)能又具有引力勢能(引力勢能實(shí)際上是衛(wèi)星與地球共有的,簡略地說此勢能是人造衛(wèi)星所具有的).設(shè)地球的質(zhì)量為M,以衛(wèi)星離地還需無限遠(yuǎn)處時(shí)的引力勢能為零,則質(zhì)量為m的人造衛(wèi)星在距離地心為r處時(shí)的引力勢能為EP=-GMm/r(G為萬有引力常量). 當(dāng)物體在地球表面的速度等于或大于某一速度時(shí),物體就可以掙脫地球引力的束縛,成為繞太陽運(yùn)動(dòng)的人造衛(wèi)星,這個(gè)速度叫做第二宇宙速度.用R表示地球的半徑,M表示地球的質(zhì)量,G表示萬有引力常量.試寫出第二宇宙速度的表達(dá)式.

查看答案和解析>>

人造地球衛(wèi)星繞地球旋轉(zhuǎn)時(shí),既具有動(dòng)能又具有引力勢能(引力勢能實(shí)際上是衛(wèi)星與地球共有的,簡略地說此勢能是人造衛(wèi)星所具有的).設(shè)地球的質(zhì)量為M,以衛(wèi)星離地?zé)o限遠(yuǎn)處時(shí)的引力勢能為零,則質(zhì)量為m的人造衛(wèi)星在距離地心為r處時(shí)的引力勢能為Ep=-
GMm
r
(G為萬有引力常量).
(1)試證明:在大氣層外任一軌道上繞地球做勻速圓周運(yùn)動(dòng)的人造衛(wèi)星所具有的機(jī)械能的絕對值恰好等于其動(dòng)能.
(2)當(dāng)物體在地球表面的速度等于或大于某一速度時(shí),物體就可以掙脫地球引力的束縛,成為繞太陽運(yùn)動(dòng)的人造衛(wèi)星,這個(gè)速度叫做第二宇宙速度,用v2表示.用R表示地球的半徑,M表示地球的質(zhì)量,G表示萬有引力常量.試寫出第二宇宙速度的表達(dá)式.
(3)設(shè)第一宇宙速度為v1,證明:v2=
2
v1

查看答案和解析>>

人造地球衛(wèi)星繞地球旋轉(zhuǎn)時(shí),既具有動(dòng)能又具有引力勢能(引力勢能實(shí)際上是衛(wèi)星與地球共有的,簡略地說此勢能是人造衛(wèi)星所具有的).設(shè)地球的質(zhì)量為M,以衛(wèi)星離地還需無限遠(yuǎn)處時(shí)的引力勢能為零,則質(zhì)量為m的人造衛(wèi)星在距離地心為r處時(shí)的引力勢能為Ep=-
GMm
r
(G為萬有引力常量).
(1)試證明:在大氣層外任一軌道上繞地球做勻速圓周運(yùn)動(dòng)的人造衛(wèi)星所具有的機(jī)械能的絕對值恰好等于其動(dòng)能.
(2)當(dāng)物體在地球表面的速度等于或大于某一速度時(shí),物體就可以掙脫地球引力的束縛,成為繞太陽運(yùn)動(dòng)的人造衛(wèi)星,這個(gè)速度叫做第二宇宙速度.用R表示地球的半徑,M表示地球的質(zhì)量,G表示萬有引力常量.試寫出第二宇宙速度的表達(dá)式.

查看答案和解析>>

(18分)人造地球衛(wèi)星繞地球旋轉(zhuǎn)時(shí),既具有動(dòng)能又具有引力勢能(引力勢能實(shí)際上是衛(wèi)星與地球共有的,簡略地說此勢能是人造衛(wèi)星所具有的)。設(shè)地球的質(zhì)量為M,以衛(wèi)星離地還需無限遠(yuǎn)處時(shí)的引力勢能為零,則質(zhì)量為m的人造衛(wèi)星在距離地心為r處時(shí)的引力勢能為(G為萬有引力常量)。(1)試證明:在大氣層外任一軌道上繞地球做勻速圓周運(yùn)動(dòng)的人造衛(wèi)星所具有的機(jī)械能的絕對值恰好等于其動(dòng)能。

(2)當(dāng)物體在地球表面的速度等于或大于某一速度時(shí),物體就可以掙脫地球引力的束縛,成為繞太陽運(yùn)動(dòng)的人造衛(wèi)星,這個(gè)速度叫做第二宇宙速度,用v2表示。用R表示地球的半徑,M表示地球的質(zhì)量,G表示萬有引力常量.試寫出第二宇宙速度的表達(dá)式。

(3)設(shè)第一宇宙速度為v1,證明:

查看答案和解析>>


同步練習(xí)冊答案