題目列表(包括答案和解析)
生產(chǎn)能力分組 | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
人數(shù) | 4 | 8 | x | 5 | 3 |
生產(chǎn)能力分組 | [110,120) | [120,130) | [130,140) | [140,150) |
人數(shù) | 6 | y | 36 | 18 |
(本小題12分)某工廠有工人1000名,其中250名工人參加過短期培訓(xùn)(稱為A類工人),另外750名工人參加過長期培訓(xùn)(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù)).從A類工人中抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2
表1:
生產(chǎn)能力分組 |
|||||
人數(shù) |
4 |
8 |
5 |
3 |
表2:
生產(chǎn)能力分組 |
||||
人數(shù) |
6 |
y |
36 |
18 |
(1)先確定,再在答題紙上完成下列頻率分布直方圖。就生產(chǎn)能力而言,A類工人中個(gè)體間的差異程度與B類工人中個(gè)體間的差異程度哪個(gè)更?(不用計(jì)算,可通過觀察直方圖直接回答結(jié)論)(注意:本題請?jiān)诖痤}卡上作圖)
(2)分別估計(jì)類工人和類工人生產(chǎn)能力的眾數(shù)、中位數(shù)和平均數(shù)。(精確到0.1)
生產(chǎn)能力分組 | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
人數(shù) | 4 | 8 | x | 5 | 3 |
生產(chǎn)能力分組 | [110,120) | [120,130) | [130,140) | [140,150) |
人數(shù) | 6 | y | 36 | 18 |
生產(chǎn)能力分組 | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
人數(shù) | 4 | 8 | x | 5 | 3 |
生產(chǎn)能力分組 | [110,120) | [120,130) | [130,140) | [140,150) |
人數(shù) | 6 | y | 36 | 18 |
生產(chǎn)能力分組 | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
人數(shù) | 4 | 8 | x | 5 | 3 |
生產(chǎn)能力分組 | [110,120) | [120,130) | [130,140) | [140,150) |
人數(shù) | 6 | y | 36 | 18 |
一、選擇題:本題考查基本知識和基本運(yùn)算。每小題5分,滿分50分。
(1)A (2)C (3)A (4)B (5)C (6)C
(7)A (8)D (9)B (10)D
二、填空題:本題考查基本知識和基本運(yùn)算。每小題4分,滿分16分。
(11)-1 (12) (13)4 (14)
(1) 設(shè)集合≤x≤2},B={x|0≤x≤4},則A∩B=A
(A)[0,2] (B)[1,2] (C)[0,4] (D)[1,4]
【考點(diǎn)分析】本題考查集合的運(yùn)算,基礎(chǔ)題。
解析:,故選擇A。
【名師點(diǎn)拔】集合是一個(gè)重要的數(shù)學(xué)語言,注意數(shù)形結(jié)合。
(2) 已知C
(A) (B) (C) (D)
【考點(diǎn)分析】本題考查復(fù)數(shù)的運(yùn)算及性質(zhì),基礎(chǔ)題。
解析:,由、是實(shí)數(shù),得
∴,故選擇C。
【名師點(diǎn)拔】一個(gè)復(fù)數(shù)為實(shí)數(shù)的充要條件是虛部為0。
(3)已知,則A
(A)1<n<m (B) 1<m<n (C)m<n<1 (D) n<m<1
【考點(diǎn)分析】本題考查對數(shù)函數(shù)的性質(zhì),基礎(chǔ)題。
解析:由知函數(shù)為減函數(shù),由得
,故選擇A。
(4)在平面直角坐標(biāo)系中,不等式組表示的平面區(qū)域的面積是B
【考點(diǎn)分析】本題考查簡單的線性規(guī)劃的可行域、三角形的面積。
解析:由題知可行域?yàn)椋?/p>
,故選擇B。
【名師點(diǎn)拔】
(5)若雙曲線上的點(diǎn)到左準(zhǔn)線的距離是到左焦點(diǎn)距離的,則C
(A) (B) (C) (D)
【考點(diǎn)分析】本題考查雙曲線的第二定義,基礎(chǔ)題。
解析:由題離心率,由雙曲線的第二定義知
,故選擇C。
【名師點(diǎn)拔】本題在條件中有意識的將雙曲線第二定義“到左焦點(diǎn)距離與到左準(zhǔn)線的距離是定值”中比的前后項(xiàng)顛倒為“到左準(zhǔn)線的距離是到左焦點(diǎn)距離的”,如本題改為填空題,沒有了選擇支的提示,則難度加大。
(6)函數(shù)的值域是C
(A)[-,] (B)[-,] (C)[] (D)[]
【考點(diǎn)分析】本題考查三角函數(shù)的性質(zhì),基礎(chǔ)題。
解析:,故選擇C。
【名師點(diǎn)拔】本題是求有關(guān)三角函數(shù)的值域的一種通法,即將函數(shù)化為
或的模式。
(7)“”是“”的A
(A)充分而不必要條件 (B)必要而不充分條件
(C)充分必要條件 (D)既不允分也不必要條件
【考點(diǎn)分析】本題考查平方不等式和充要條件,基礎(chǔ)題。
解析:由能推出;但反之不然,因此平方不等式的條件是。
【名師點(diǎn)拔】
(8)若多項(xiàng)式D
(A)9 (B)10 (C)-9 (D)-10
【考點(diǎn)分析】本題考查二項(xiàng)式展開式的特殊值法,基礎(chǔ)題。
解析:令,得,
令,得
(9)如圖,O是半徑為l的球心,點(diǎn)A、B、C在球面上,OA、OB、OC兩兩垂直,E、F分別是大圓弧AB與AC的中點(diǎn),則點(diǎn)E、F在該球面上的球面距離是B
【考點(diǎn)分析】本題考查球面距的計(jì)算,基礎(chǔ)題。
解析:如圖,
∴
∴,∴點(diǎn)E、F在該球面上的球面距離為
故選擇B。
【名師點(diǎn)拔】兩點(diǎn)球面距的計(jì)算是立體幾何的一個(gè)難點(diǎn),其通法的關(guān)鍵是求出兩點(diǎn)的球面角,而求球面角又需用余弦定理。
(10)函數(shù)滿足,則這樣的函數(shù)個(gè)數(shù)共有D
(A)1個(gè) (B)4個(gè) (C)8個(gè) (D)10個(gè)
【考點(diǎn)分析】本題考查抽象函數(shù)的定義,中檔題。
解析:即
(11)設(shè)為等差數(shù)列的前項(xiàng)和,若,則公差為。1 (用數(shù)字作答)。
【考點(diǎn)分析】本題考查等差數(shù)列的前項(xiàng)和,基礎(chǔ)題。
解析:設(shè)首項(xiàng)為,公差為,由題得
【名師點(diǎn)拔】數(shù)學(xué)問題解決的本質(zhì)是,你已知什么?從已知出發(fā)又能得出什么?完成了這些,也許水到渠成了。本題非;A(chǔ),等差數(shù)列的前項(xiàng)和公式的運(yùn)用自然而然的就得出結(jié)論。
(12)對,記函數(shù)的最小值是 .
【考點(diǎn)分析】本題考查新定義函數(shù)的理解、解絕對值不等式,中檔題。
,其圖象如右,
則。
【名師點(diǎn)拔】數(shù)學(xué)中考查創(chuàng)新思維,要求必須要有良好的數(shù)學(xué)素養(yǎng)。
(13)設(shè)向量滿足 b,若,則的值是 4 。
【考點(diǎn)分析】本題考查向量的代數(shù)運(yùn)算,基礎(chǔ)題。
解析:
【名師點(diǎn)拔】向量的模轉(zhuǎn)化為向量的平方,這是一個(gè)重要的向量解決思想。
(14)正四面體ABCD的棱長為1,棱AB∥平面α,則正四面體上的所有點(diǎn)在平面α內(nèi)的射影構(gòu)成的圖形面積的取值范圍是 .
三、解答題
(15)本題主要考查三角函數(shù)的圖像,已知三角函數(shù)求角,向量夾角的計(jì)算等基礎(chǔ)知識和基本的運(yùn)算能力。滿分14分。
解:(I)因?yàn)楹瘮?shù)圖像過點(diǎn),
所以即
因?yàn),所?
(II)由函數(shù)及其圖像,得
所以從而
,
故.
(16)本題主要考查二次函數(shù)的基本性質(zhì)與不等式的應(yīng)用等基礎(chǔ)知識。滿分14分。
證明:(I)因?yàn)椋?/p>
所以.
由條件,消去,得
;
由條件,消去,得
,.
故.
(II)拋物線的頂點(diǎn)坐標(biāo)為,
在的兩邊乘以,得
.
又因?yàn)?/p>
而
所以方程在區(qū)間與內(nèi)分別有一實(shí)根。
故方程在內(nèi)有兩個(gè)實(shí)根.
(17)本題主要考查空間線線、線面關(guān)系、空間向量的概念與運(yùn)算等基礎(chǔ)知識,同時(shí)考查空間想象能力。滿分14分。
解:方法一:
(I)因?yàn)槭堑闹悬c(diǎn),,
所以.
因?yàn)槠矫,所?/p>
,
從而平面.
因?yàn)槠矫妫?/p>
所以.
(II)取的中點(diǎn),連結(jié)、,
則,
所以與平面所成的角和與平面所成的角相等.
因?yàn)槠矫妫?/p>
所以是與平面所成的角.
在中,
.
故與平面所成的角是.
方法二:
如圖,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,設(shè),則
.
(I) 因?yàn)?/p>
,
所以
(II) 因?yàn)?/p>
,
所以,
又因?yàn)椋?/p>
所以平面
因此的余角即是與平面所成的角.
因?yàn)?/p>
,
所以與平面所成的角為.
(18)本題主要考察排列組合、概率等基本知識,同時(shí)考察邏輯思維能力和數(shù)學(xué)應(yīng)用能力。滿分14分。
解:(I)記“取到的4個(gè)球全是紅球”為事件.
(II)記“取到的4個(gè)球至多有1個(gè)紅球”為事件,“取到的4個(gè)球只有1個(gè)紅球”為事件,“取到的4個(gè)球全是白球”為事件.
由題意,得
所以
,
化簡,得
解得,或(舍去),
故 .
(19)本題主要考查直線與橢圓的位置關(guān)系、橢圓的幾何性質(zhì),同時(shí)考察解析幾何的基本思想方法和綜合解題能力。滿分14分。
解:(I)過點(diǎn)、的直線方程為
因?yàn)橛深}意得 有惟一解,
即有惟一解,
所以
(),
故
又因?yàn)?即
所以
從而得
故所求的橢圓方程為
(II)由(I)得
故
從而
由
解得
所以
因?yàn)?/p>
又得
因此
(20)本題主要考查函數(shù)的導(dǎo)數(shù)、數(shù)列、不等式等基礎(chǔ)知識,以及不等式的證明,同時(shí)考查邏輯推理能力。滿分14分。
證明:(I)因?yàn)?/p>
所以曲線在處的切線斜率
因?yàn)檫^和兩點(diǎn)的直線斜率是
所以.
(II)因?yàn)楹瘮?shù)當(dāng)時(shí)單調(diào)遞增,
而
,
所以,即
因此
又因?yàn)?/p>
令
則
因?yàn)?/p>
所以
因此
故
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com