(Ⅲ) 若x1=4.bn=xn-2.Tn是數(shù)列{bn}的前n項和.證明Tn<3. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)fx)=x2-4,設曲線yfx)在點(xn,fxn))處的切線與x軸的交點為(xn+1,0)(n),其中為正實數(shù).  

 (Ⅰ)用表示xn+1;

(Ⅱ)若a1=4,記an=lg,證明數(shù)列{}成等比數(shù)列,并求數(shù)列{xn}的通項公式;

(Ⅲ)若x1=4,bnxn-2,Tn是數(shù)列{bn}的前n項和,證明Tn<3.

查看答案和解析>>

已知函數(shù)f(x)=x2-4,設曲線y=f(x)在點(xn,f(xn))處的切線與x軸的交點為(xn+1,0)(n∈N +),其中xn為正實數(shù).
(1)用xn表示xn+1;
(2)若x1=4,記an=lg,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項公式;
(3)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項和,證明Tn<3.

查看答案和解析>>

已知函數(shù)f(x)=x2-4,設曲線y=f(x)在點(xn,f(xn))處的切線與x軸的交點為(xn+1,0)(n∈N +),其中xn為正實數(shù).
(1)用xn表示xn+1;
(2)若x1=4,記an=lg,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項公式;
(3)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項和,證明Tn<3.

查看答案和解析>>

已知函數(shù)fx)=x2-4,設曲線yfx)在點(xn,fxn))處的切線與x軸的交點為(xn+1,0)(n),其中為正實數(shù).  
(Ⅰ)用表示xn+1;
(Ⅱ)若a1=4,記an=lg,證明數(shù)列{}成等比數(shù)列,并求數(shù)列{xn}的通項公式;
(Ⅲ)若x1=4,bnxn-2,Tn是數(shù)列{bn}的前n項和,證明Tn<3.

查看答案和解析>>

已知函數(shù)fx)=x2-4,設曲線yfx)在點(xn,fxn))處的切線與x軸的交點為(xn+1,0)(nN *),其中x1為正實數(shù).

(Ⅰ)用xn表示xn+1;

(Ⅱ)若x1=4,記a4 =lg,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項公式;

(Ⅲ)若x1=4,bnxn-2,Tn是數(shù)列{bn}的前n項和,證明Tn<3.

查看答案和解析>>

一、選擇題:DDBD   CCBA

二、填空題:9、  10、-2    11、1    12、11   

13、解析:    14、

15、解:(Ⅰ)時,f(x)>1

令x=-1,y=0則f(-1)=f(-1)f(0)∵f(-1)>1

∴f(0)=1

若x>0,則f(x-x)=f(0)=f(x)f(-x)故

故x∈R   f(x)>0

任取x1<x2   

故f(x)在R上減函數(shù)

(Ⅱ)①  由f(x)單調性

 an+1=an+2  故{an}等差數(shù)列    

   是遞增數(shù)列

 當n≥2時,

 

而a>1,∴x>1

故x的取值范圍(1,+∞)

16、解:(I),

(舍去)

單調遞增;

單調遞減. 

上的極大值 

   (II)由

, …………① 

,

依題意知上恒成立,

,

,

 上單增,要使不等式①成立,

當且僅當 

   (III)由

,

上遞增;

上遞減 

,

恰有兩個不同實根等價于

        

17、解:(Ⅰ)由題可得

所以曲線在點處的切線方程是:

,得.即.顯然,∴

(Ⅱ)由,知,同理

   故

從而,即.所以,數(shù)列成等比數(shù)列.

.即

從而所以

(Ⅲ)由(Ⅱ)知,

時,顯然

時,

   綜上,

18、解:(I),

(舍去)

單調遞增;

單調遞減.  

上的極大值  

   (II)由

, …………①  

,

,

依題意知上恒成立,

,

 上單增,要使不等式①成立,

當且僅當

   (III)由

,

上遞增;

上遞減  

,

恰有兩個不同實根等價于

  

 


同步練習冊答案