題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;
(Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.
(1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.
一、選擇題
題號(hào)
1
2
3
4
5
6
7
8
9
10
答案
D
A
A
D
B
C
C
B
C
D
二、填空題
11. cosx+sinx _ 12.
13._____ -1____________ 14.
15. 16.
17.
三、解答題
18.解:由橢圓的標(biāo)準(zhǔn)方程知橢圓的焦點(diǎn)為,離心率為………………3分
因?yàn)殡p曲線與橢圓有相同的焦點(diǎn),所以,雙曲線焦點(diǎn)在x軸上,c=4,………………2分
又雙曲線與橢圓的離心率之和為,故雙曲線的離心率為2,所以a=2………………4分
又b2=c2-a2=16-4=12。………………………………………………………………………2分
所以雙曲線的標(biāo)準(zhǔn)方程為!1分
19.解:p真:m<0…………………………………………………………………………2分
q真:……………………………………………………………2分
故-1<m<1。…………………………………………………………………………………2分
由和都是假命題知:p真q假,………………………………………………4分
故!4分
20.解:(1)設(shè)|PF2|=x,則|PF1|=2a-x……………………………………………………2分
∵,∴, ∴…………1分
∴,……………………………………………………………………2分
………………………………2分
(2)由題知a=4,,故………………………………………………1分
由得,…………………………………………………………………1分
又……………………………………2分
故,代入橢圓方程得,………………………………………2分
故Q點(diǎn)的坐標(biāo)為,,,。
…………………………………………………………………………………………………2分
21.解:(1)由函數(shù),求導(dǎo)數(shù)得,…1分
由題知點(diǎn)P在切線上,故f(1)=4,…………………………………………………………1分
又切點(diǎn)在曲線上,故1+a+b+c=4①…………………………………………………………1分
且,故3+2a+b=3②………………………………………………………………1分
③……………………2分
故……………………1分
(2)…………………………1分
x
-2
+
0
-
0
+
極大值
極小值
有表格或者分析說明…………………………………………………………………………3分
,…………………………………………………………2分
∴f(x)在[-3,1]上最大值為13。故m的取值范圍為{m|m>13}………………………2分
22.解:(1)由題意設(shè)過點(diǎn)M的切線方程為:,…………………………1分
代入C得,則,………………2分
,即M(-1,).………………………………………2分
另解:由題意得過點(diǎn)M的切線方程的斜率k=2,…………………………………………1分
設(shè)M(x0,y0),,………………………………………………………………1分
由導(dǎo)數(shù)的幾何意義可知2x0+4=2,故x0= -1,……………………………………………2分
代入拋物線可得y0=,點(diǎn)M的坐標(biāo)為(-1,)……………………………………1分
(2)假設(shè)在C上存在點(diǎn)滿足條件.設(shè)過Q的切線方程為:,代入,
則,
且.………………………………………………………2分
若時(shí),由于,…………………2分
當(dāng)a>0時(shí),有
∴ 或 ;……………………………………2分
當(dāng)a≤0時(shí),∵k≠0,故 k無解。……………………………………………………1分
若k=0時(shí),顯然也滿足要求.…………………………………………1分
綜上,當(dāng)a>0時(shí),有三個(gè)點(diǎn)(-2+,),(-2-,)及(-2,-),且過這三點(diǎn)的法線過點(diǎn)P(-2,a),其方程分別為:
x+2y+2-2a=0,x-2y+2+2a=0,x=-2。
當(dāng)a≤0時(shí),在C上有一個(gè)點(diǎn)(-2,-),在這點(diǎn)的法線過點(diǎn)P(-2,a),其方程為:x=-2!3分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com