14. 查看更多

 

題目列表(包括答案和解析)

(
1
4
)-
1
2
(
4ab-1
)
3
(0.1-2)(a3b-3)
1
2
=
 

查看答案和解析>>

7、14名同學合影,站成前排5人后排9人,現(xiàn)攝影師要從后排9人中抽2人調(diào)整到前排,若其他人的相對順序不變,則不同調(diào)整方法的總數(shù)為( 。

查看答案和解析>>

(14分)已知函數(shù)的定義域是R,Z},且,,當時,.

(1)求證:是奇函數(shù);

(2)求在區(qū)間Z)上的解析式;

(3)是否存在正整數(shù)k,使得當x時,不等式有解?證明你的結(jié)論.

查看答案和解析>>

(14分)在數(shù)列中,.

(1)試比較的大小關(guān)系;

(2)證明:當時,.

查看答案和解析>>

(14分) 已知二次函數(shù)為偶函數(shù),函數(shù)的圖象與直線y=x相切.

(1)求的解析式

(2)若函數(shù)上是單調(diào)減函數(shù),那么:

①求k的取值范圍;

②是否存在區(qū)間[m,n](m<n,使得在區(qū)間[m,n]上的值域恰好為[km,kn]?若存在,請求出區(qū)間[m,n];若不存在,請說明理由.

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

答案

D

A

A

D

B

C

C

B

C

D

二、填空題

11.     cosx+sinx          _                   12.

13._____  -1____________                    14.

15.                   16.

17.

三、解答題

18.解:由橢圓的標準方程知橢圓的焦點為,離心率為………………3分

因為雙曲線與橢圓有相同的焦點,所以,雙曲線焦點在x軸上,c=4,………………2分

又雙曲線與橢圓的離心率之和為,故雙曲線的離心率為2,所以a=2………………4分

又b2=c2-a2=16-4=12!2分

所以雙曲線的標準方程為。………………………………………………1分

19.解:p真:m<0…………………………………………………………………………2分

q真:……………………………………………………………2分

故-1<m<1。…………………………………………………………………………………2分

都是假命題知:p真q假,………………………………………………4分

!4分

20.解:(1)設(shè)|PF2|=x,則|PF1|=2a-x……………………………………………………2分

,∴, ∴…………1分

,……………………………………………………………………2分

………………………………2分

(2)由題知a=4,,故………………………………………………1分

,…………………………………………………………………1分

……………………………………2分

,代入橢圓方程得,………………………………………2分

故Q點的坐標為,,。

…………………………………………………………………………………………………2分

21.解:(1)由函數(shù),求導數(shù)得,…1分

由題知點P在切線上,故f(1)=4,…………………………………………………………1分

又切點在曲線上,故1+a+b+c=4①…………………………………………………………1分

,故3+2a+b=3②………………………………………………………………1分

③……………………2分

……………………1分

(2)…………………………1分

x

-2

+

0

0

+

極大值

極小值

有表格或者分析說明…………………………………………………………………………3分

,…………………………………………………………2分

∴f(x)在[-3,1]上最大值為13。故m的取值范圍為{m|m>13}………………………2分

22.解:(1)由題意設(shè)過點M的切線方程為:,…………………………1分

代入C得,則,………………2分

,即M(-1,).………………………………………2分

另解:由題意得過點M的切線方程的斜率k=2,…………………………………………1分

設(shè)M(x0y0),,………………………………………………………………1分

由導數(shù)的幾何意義可知2x0+4=2,故x0= -1,……………………………………………2分

代入拋物線可得y0=,點M的坐標為(-1,)……………………………………1分

(2)假設(shè)在C上存在點滿足條件.設(shè)過Q的切線方程為:,代入,

,

.………………………………………………………2分

時,由于,…………………2分

當a>0時,有

或  ;……………………………………2分

當a≤0時,∵k≠0,故 k無解。……………………………………………………1分

若k=0時,顯然也滿足要求.…………………………………………1分

綜上,當a>0時,有三個點(-2+,),(-2-,)及(-2,-),且過這三點的法線過點P(-2,a),其方程分別為:

x+2y+2-2a=0,x-2y+2+2a=0,x=-2。

當a≤0時,在C上有一個點(-2,-),在這點的法線過點P(-2,a),其方程為:x=-2。……………………………………………………………………………………3分

 

 

 

 

 


同步練習冊答案