解:(1) 將條件變?yōu)?1-=.因此{(lán)1-}為一個(gè)等比數(shù)列.其首項(xiàng)為1-=.公比.從而1-=.據(jù)此得an=----1°(2) 證:據(jù)1°得.a1?a2?-an=為證a1?a2?--an<2?n!只要證nÎN*時(shí)有>----2°顯然.左端每個(gè)因式都是正數(shù).先證明.對(duì)每個(gè)nÎN*.有³1-()----3°用數(shù)學(xué)歸納法證明3°式:(i) n=1時(shí).3°式顯然成立.(ii) 設(shè)n=k時(shí).3°式成立.即³1-()則當(dāng)n=k+1時(shí).³[1-=1-³1-(+)即當(dāng)n=k+1時(shí).3°式也成立.故對(duì)一切nÎN*.3°式都成立.利用3°得.³1-()=1-=1->故2°式成立.從而結(jié)論成立. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知函數(shù)f(x)是定義在[-5,5]上的偶函數(shù),且f(x)在[0,5]上的圖象如圖所示,其中滿足f(0)=0,f(5)=2,最高點(diǎn)為(2,5),
(1)試將函數(shù)f(x)在[-5,5]的圖象補(bǔ)充完整;
(2)寫(xiě)出f(x)的單調(diào)區(qū)間(無(wú)需證明);
(3)若方程f(x)=m有兩個(gè)解,寫(xiě)出所有滿足條件的m值構(gòu)成的集合M.

查看答案和解析>>

有一解三角形的題目,因紙張破損有一個(gè)條件丟失,具體如下:在△ABC中,已知a=
3
,2cos2
A+C
2
=(
2
-1
)cosB,
c=
6
+
2
2
c=
6
+
2
2
,求角A.經(jīng)推斷,破損處的條件為三角形的一邊長(zhǎng)度,且答案為A=60°.將條件補(bǔ)充完整填在空白處.

查看答案和解析>>

設(shè)點(diǎn)是拋物線的焦點(diǎn),是拋物線上的個(gè)不同的點(diǎn)().

(1) 當(dāng)時(shí),試寫(xiě)出拋物線上的三個(gè)定點(diǎn)、、的坐標(biāo),從而使得

;

(2)當(dāng)時(shí),若,

求證:;

(3) 當(dāng)時(shí),某同學(xué)對(duì)(2)的逆命題,即:

“若,則.”

開(kāi)展了研究并發(fā)現(xiàn)其為假命題.

請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開(kāi)展研究:

① 試構(gòu)造一個(gè)說(shuō)明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);

② 對(duì)任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說(shuō)明你的理由(本研究方向最高得8分);

③ 如果補(bǔ)充一個(gè)條件后能使該逆命題為真,請(qǐng)寫(xiě)出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說(shuō)明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評(píng)分說(shuō)明】本小題若填空不止一個(gè)研究方向,則以實(shí)得分最高的一個(gè)研究方向的得分作為本小題的最終得分.

【解析】第一問(wèn)利用拋物線的焦點(diǎn)為,設(shè),

分別過(guò)作拋物線的準(zhǔn)線的垂線,垂足分別為.

由拋物線定義得到

第二問(wèn)設(shè),分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

第三問(wèn)中①取時(shí),拋物線的焦點(diǎn)為

設(shè),分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,

,不妨取;

解:(1)拋物線的焦點(diǎn)為,設(shè)

分別過(guò)作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得

 

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以,

故可取滿足條件.

(2)設(shè),分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

   又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">

;

所以.

(3) ①取時(shí),拋物線的焦點(diǎn)為,

設(shè)分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;;,

,

.

,,是一個(gè)當(dāng)時(shí),該逆命題的一個(gè)反例.(反例不唯一)

② 設(shè),分別過(guò)

拋物線的準(zhǔn)線的垂線,垂足分別為,

及拋物線的定義得

,即.

因?yàn)樯鲜霰磉_(dá)式與點(diǎn)的縱坐標(biāo)無(wú)關(guān),所以只要將這點(diǎn)都取在軸的上方,則它們的縱坐標(biāo)都大于零,則

,

,所以.

(說(shuō)明:本質(zhì)上只需構(gòu)造滿足條件且的一組個(gè)不同的點(diǎn),均為反例.)

③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo))滿足 ”,即:

“當(dāng)時(shí),若,且點(diǎn)的縱坐標(biāo))滿足,則”.此命題為真.事實(shí)上,設(shè)

分別過(guò)作拋物線準(zhǔn)線的垂線,垂足分別為,由,

及拋物線的定義得,即,則

,

又由,所以,故命題為真.

補(bǔ)充條件2:“點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱”,即:

“當(dāng)時(shí),若,且點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱,則”.此命題為真.(證略)

 

查看答案和解析>>

在△中,∠,∠,∠的對(duì)邊分別是,且 .

(1)求∠的大;(2)若,求的值.

【解析】第一問(wèn)利用余弦定理得到

第二問(wèn)

(2)  由條件可得 

將    代入  得  bc=2

解得   b=1,c=2  或  b=2,c=1  .

 

查看答案和解析>>

已知數(shù)列{an}滿足以下兩個(gè)條件:①點(diǎn)(an,an+1)在直線y=x+2上;②首項(xiàng)a1是方程3x2-4x+1=0的整數(shù)解.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)等比數(shù)列{bn}中,b1=a1,b2=a2,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>


同步練習(xí)冊(cè)答案